K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

\(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2.x.\frac{1}{x}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Rightarrow x+\frac{1}{x}=3.\)

\(x^3+\frac{1}{x^3}= \left(x+\frac{1}{x}\right)^3-3x^2.\frac{1}{x}-3.x.\frac{1}{x^2}=3^3-3x-\frac{3}{x}=27-3\left(x+\frac{1}{x}\right)=27-3.3=18\)

\(x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5x^4-10x^3-10x^2-5x=3^5-5x\left(x^3+2x^2+2x+1\right)-5x\left(x+1\right)\left(x^2+x+1\right)\)

17 tháng 7 2018

2.

Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)

Lại có  \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)

\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )

3.

Ta có hằng đẳng thức  \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)

Thay  \(x+y=7\)và  \(xy=-3\)vào ta được :

\(x^2+y^2=7^2-2\left(-3\right)\)

\(\Leftrightarrow x^2+y^2=49+6=55\)

Vậy ...

17 tháng 7 2018

1. 

a) Đặt  \(A=x^2-6x+10\)

\(A=\left(x^2-6x+9\right)+1\)

\(A=\left(x-3\right)^2+1\)

Mà  \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1>0\)

Vậy ...

b) Đặt \(B=x^2-4x+7\)

\(B=\left(x^2-4x+4\right)+3\)

\(B=\left(x-2\right)^2+3\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B\ge3\)

Vậy ...

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

6 tháng 10 2016

ko có yêu cầu ai làm đc

7 tháng 10 2016

lam gium minh 

 

31 tháng 5 2018

3) \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

S=\(\left\{6;1\right\}\)

\(\)

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2