Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này khá dài, c vào đây xem nhé https://cunghocvui.com/danh-muc/toan-lop-7
Hình e tự vẽ nhé :)
a) Xét tam giác AOD và tam giác COB có :
OA = OC ( gt )
góc xOy chung
OD = OB
=> tam giác AOD = tam giác COB ( c-g-c )
=> đpcm
b) Vi OD = OB
=> tam giác OBD cân tại O
=> góc OBD = góc ODB
Ta có : OB = OD
hay OA + AB = OC + CD
=> AB = CD ( vì AO = OC )
Xét tam giác ABD và tam giác CDB có :
AB = CD ( cmt )
góc OBD = góc ODB ( cmt )
BD chung
=> tam giác ABD = tam giác CDB ( c-g-c )
=> đpcm
c) Vì tam giác ABD = tam giác CDB ( cmt )
=> BC = AD ( 2 c.t.ứ ) (1) và góc CBD = góc ADB ( 2 g.t.ứ ) (2)
Từ (2) => tam giác BID cân tại I
=> BI = ID ( đpcm ) (3)
Từ (1) => BI + IC = IA = ID (4)
Từ (3) và (4) ta có IA = IC ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ∆OAD và ∆OCB có: OA= OC(gt)
ˆAODAOD^=ˆCOBCOB^(=ˆAA^)
OD=OB(gt)
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b) ∆OAD=∆OCB(cmt)
Suy ra: ˆDD^= ˆBB^
ˆA1A1^=ˆC1C1^ => ˆA2A2^=ˆC2C2^
Do đó ∆AOE = ∆OCE(c .c.c)
suy ra: ˆOAEOAE^=ˆCOECOE^
vậy OE là tia phân giác của xOy.
b) ∆AEB= ∆CED(câu b) => EA=EC.
∆OAE và ∆OCE có: OA=OC(gt)
EA=EC(cmt)
OE là cạnh chung.
Nên ∆OAE=∆(OCE)(c .c.c)
suy ra: ˆAOEAOE^=ˆCOECOE^
vậy OE là tia phân giác của góc xOy.