Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì Om là phần giác của \(\widehat{zOt}\)
=> \(\widehat{mOz}=\widehat{mOt}\)
Mặt khác : \(\widehat{zOy}=\widehat{tOx}=30^0\)
=> \(\widehat{mOz}+\widehat{zOy}=\widehat{mOt}+\widehat{tOx}\)
=> \(\widehat{yOm}=\widehat{mOx}\)
Vậy Om cũng là phân giác của \(\widehat{xOy}\)
O y x n t m
a)
Theo đề ra, ta có:
\(\widehat{xOn}+\widehat{nOm}=\widehat{xOm}\)
\(\widehat{yOm}+\widehat{nOm}=\widehat{yOn}\)
Ta có \(\widehat{xOm}=\widehat{yOn}=90^o\Rightarrow\widehat{xOn}=\widehat{yOm}\)
b)
Theo đề ra, ta có: Ot là tia phân giác của \(\widehat{xOy}\Rightarrow\widehat{xOt}=\widehat{yOt}=\widehat{xOy}:2\)
Ta có:
\(\widehat{xOn}+\widehat{nOt}=\widehat{xOt}\)
\(\widehat{yOm}+\widehat{mOt}=\widehat{yOt}\)
Mà \(\widehat{xOt}=\widehat{yOt}\)và\(\widehat{xOn}=\widehat{yOm}\)
\(\Rightarrow\widehat{nOt}=\widehat{mOt}\)
Vậy Ot là tia phân giác của \(\widehat{mOn}\)
(a) Do tia On nằm giữa 2 tia Ox và Oy nên ta có ˆxOy=ˆxOn+ˆnOyxOy^=xOn^+nOy^
⇒ˆxOn=ˆxOy−900⇒xOn^=xOy^−900 hay ˆxOnxOn^ nhọn
⇒ˆxOn<ˆxOm⇒xOn^<xOm^ mà 2 tia Om và On cùng thuộc nửa mặt phẳng bờ Ox chứa Oy nên tia On nằm giữa tia Ox và tia Oy
⇒ˆxOn+ˆmOn=ˆxOm=900⇒xOn^+mOn^=xOm^=900
Tương tự ta có ˆyOm+ˆmOn=900yOm^+mOn^=900. Do đó ˆxOn=ˆyOmxOn^=yOm^ (đpcm).
(b) Ta có: ˆxOn=ˆxOy−900=12ˆxOy+ˆxOy−18002<ˆxOy2=ˆxOt<900=ˆxOmxOn^=xOy^−900=12xOy^+xOy^−18002<xOy^2=xOt^<900=xOm^Mà Om, On, Ot cùng thuộc nửa mặt phẳng bờ Ox chứa Oy nên tia Ot nằm giữa 2 tia Om và On.
⇒⇒ ˆnOt=ˆxOt−ˆxOn=ˆyOt−ˆyOm=ˆtOmnOt^=xOt^−xOn^=yOt^−yOm^=tOm^ hay Ot là phân giác ˆmOnmOn^
mình sửa bài 1. bạn ghi đề sai " ác " quá
1. cho góc \(\widehat{xOy}\)và tia Oz nằm trong góc đó sao cho \(\widehat{xOz}=4.\widehat{yOz}\). tia phân giác Ot của góc xOz sao cho .....
x O y t z
Ta có : \(Ot\perp Oy\)nên \(\widehat{zOt}+\widehat{yOz}=90^o\)
Mà Ot là phân giác của \(\widehat{xOz}\)nên \(\widehat{zOt}=\frac{1}{2}.\widehat{xOz}\)
\(\Rightarrow\frac{1}{2}.\widehat{xOz}+\widehat{yOz}=90^o\)
Mà \(\widehat{xOz}=4.\widehat{yOz}\)
\(\Rightarrow\frac{1}{2}.4.\widehat{yOz}+\widehat{yOz}=90^o\Rightarrow3.\widehat{yOz}=90^o\Rightarrow\widehat{yOz}=30^o\)
Do đó : \(\widehat{xOy}=\widehat{xOz}+\widehat{yOz}=4.\widehat{yOz}+\widehat{yOz}=5.\widehat{yOz}=150^o\)
x O y x' y' m m'
Vì Om và Om' là tia phân giác các góc XOY và X'OY' nên:
\(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)
\(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}\widehat{x'Oy'}\)
Mà \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Nên \(\widehat{x'Om'}=\widehat{yOm}\)
Ta có \(\widehat{mOm'}=\widehat{mOx'}+\widehat{x'Om'}\)
\(=\widehat{mOx'}+\widehat{yOm}\)
\(=\widehat{x'Oy}\)
\(=180^o\).
Suy Om và Om' là hai tia đói nhau.
Ta có hình vẽ:
x O y a b M
Ta có:
yMa = xOy (1)
OMb = xOy (2)
Từ (1) và (2) => yMa = OMb = xOy
Lại có: aMO + aMy = 180o (kề bù)
=> aMO + OMb = 180o
=> aMb = 180o hay Ma và Mb là 2 tia đối nhau (đpcm)