Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆OAD và ∆OCB có: OA= OC(gt)
ˆAODAOD^=ˆCOBCOB^(=ˆAA^)
OD=OB(gt)
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b) ∆OAD=∆OCB(cmt)
Suy ra: ˆDD^= ˆBB^
ˆA1A1^=ˆC1C1^ => ˆA2A2^=ˆC2C2^
Do đó ∆AOE = ∆OCE(c .c.c)
suy ra: ˆOAEOAE^=ˆCOECOE^
vậy OE là tia phân giác của xOy.
b) ∆AEB= ∆CED(câu b) => EA=EC.
∆OAE và ∆OCE có: OA=OC(gt)
EA=EC(cmt)
OE là cạnh chung.
Nên ∆OAE=∆(OCE)(c .c.c)
suy ra: ˆAOEAOE^=ˆCOECOE^
vậy OE là tia phân giác của góc xOy.
a) Bạn tham khảo tại đây nhé: Câu hỏi của phạm thanh trà.
Chúc bạn học tốt!
Hình vẽ :
a) Xét \(\Delta OACvà\Delta OBD\) là :
\(\left\{{}\begin{matrix}OA=OB\left(gt\right)\\\widehat{O}:chung\\OD=OC\left(gt\right)\end{matrix}\right.\)
=> \(\Delta OAC=\Delta OBD\left(c.g.c\right)\)
b) Ta có : \(\left\{{}\begin{matrix}OB=OA\\OC=OD\end{matrix}\right.\left(giảthiết\right)\)
Lại có : \(\left\{{}\begin{matrix}OC=OB+BC\\OD=OA+AD\end{matrix}\right.\)
Suy ra : \(\Rightarrow OC-OB=OD-OA\)
=> BC = AD
Xét \(\Delta IBCvà\Delta IAD\) có :
\(\left\{{}\begin{matrix}BC=AD\left(cmt\right)\\\widehat{BIC}=\widehat{AID}\left(đ.đỉnh\right)\\\widehat{ICB}=\widehat{IDA}\left(\Delta OAC=\Delta OBD\right)\end{matrix}\right.\)
=> \(\Delta IBC=\Delta IAD\left(g.c.g\right)\)
=> IA = IB (2 cạnh tương ứng)
c) Xét \(\Delta OBIvà\Delta OAI\) có :
\(\left\{{}\begin{matrix}OA=OB\left(gt\right)\\OI:chung\\AI=BI\left(câub\right)\end{matrix}\right.\)
=> \(\Delta OBI=\Delta OAI\left(c.c.c\right)\)
=> \(\widehat{IOB}=\widehat{IOA}\) (2 góc tương ứng)
=> OI là tia phân giác của góc xOy.
a: Xét ΔOAC và ΔOBD có
OA=OB
góc O chung
OC=OD
Do đo: ΔOAC=ΔOBD
b: Xét ΔIBC và ΔIAD có
góc IBC=góc IAD
BC=AD
góc ICB=góc IDA
Do đó: ΔIBC=ΔIAD
Suy ra: IB=IA
c: Xét ΔOIC và ΔOID có
OI chung
IC=ID
OC=OD
Do đó: ΔOIC=ΔOID
Suy ra: góc COI=góc DOI
hay OI là phân giác của góc xOy
a) Xét 2 \(\Delta\) \(OBC\) và \(OAD\) có:
\(OB=OA\left(gt\right)\)
\(\widehat{O}\) chung
\(OC=OD\left(gt\right)\)
=> \(\Delta OBC=\Delta OAD\left(c-g-c\right)\)
=> \(BC=AD\) (2 cạnh tương ứng).
Ta có:
\(\left\{{}\begin{matrix}OD+BD=OB\\OC+AC=OA\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}OB=OA\left(gt\right)\\OD=OC\left(gt\right)\end{matrix}\right.\)
=> \(AC=BD.\)
Xét 2 \(\Delta\) \(ABC\) và \(BAD\) có:
\(AC=BD\left(cmt\right)\)
\(BC=AD\left(cmt\right)\)
Cạnh AB chung
=> \(\Delta ABC=\Delta BAD\left(c-c-c\right).\)
b) Xét 2 \(\Delta\) \(OBI\) và \(OAI\) có:
\(OB=OA\left(gt\right)\)
\(BI=AI\left(gt\right)\)
Cạnh OI chung
=> \(\Delta OBI=\Delta OAI\left(c-c-c\right)\)
=> \(\widehat{BOI}=\widehat{AOI}\) (2 góc tương ứng).
=> \(OI\) là tia phân giác của \(\widehat{AOB}.\)
Hay \(OI\) là tia phân giác của \(\widehat{xOy}\left(đpcm\right).\)
Chúc bạn học tốt!