Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì góc AOB là hai góc kề bù nên: góc AOB+góc BOC=1800 mà góc BOC = 5góc AOB nên:6 góc AOB=1800 (các bận có thể iết bằng kí hiệu của các góc ^_^
Do đó :góc AOB=1800:6=300
b) Vì OD là tia phân giác của góc BOC nên Góc BOC = góc DOC=ba phần hai (đó là phân số mình ko ghi đc nên mới ghi zậy)góc BOC=750
Vì góc AOD=1800 - góc DOC=1800-750=105
c)Tất cả có n+4 tia phân biệt. Cứ 1 tia trong n+4 tia đó tạo với n+4-1=n+3 tia còn lại thành n+3 góc. Có n+4 tia nên tạ thành (n+4)(n+3) góc, nhưng như thế mỗi góc tính được hai lần.Vậy có tất cả (n+4)(n+3) góc
2
TO DA CO KET BAN VOI CAU MA CAU CHANG NOI GI HET
SAO CAU LAI KO NOI GI HET VAY
Ta có : AOB + BOC = 180o (Hai góc kề bù)
Mà : BOC = 5.AOB
Nên : AOB + 5.AOB = 180o
=> 6.AOB = 180o
=> AOB = 180o : 6
=> AOB = 30o
Do đó BOC = 180o - 30o = 150o
a) Ta có: \(\widehat{AOB}\) và \(\widehat{BOC}\) là hai góc kề bù(gt)
nên \(\widehat{AOB}+\widehat{BOC}=180^0\)
\(\Leftrightarrow\widehat{AOB}+5\cdot\widehat{AOB}=180^0\)
\(\Leftrightarrow6\cdot\widehat{AOB}=180^0\)
hay \(\widehat{AOB}=30^0\)
Ta có: \(\widehat{BOC}=5\cdot\widehat{AOB}\)(gt)
nên \(\widehat{BOC}=5\cdot30^0\)
hay \(\widehat{BOC}=150^0\)
Vậy: \(\widehat{AOB}=30^0\); \(\widehat{BOC}=150^0\)
b) Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{DOB}< \widehat{BOC}\left(75^0< 150^0\right)\)
nên tia OD nằm giữa hai tia OB và OC
\(\Leftrightarrow\widehat{COD}+\widehat{BOD}=\widehat{COB}\)
\(\Leftrightarrow\widehat{COD}=\widehat{COB}-\widehat{BOD}=150^0-75^0=75^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{COD}< \widehat{COA}\left(75^0< 180^0\right)\) nên tia OD nằm giữa hai tia OC và OA
\(\Leftrightarrow\widehat{COD}+\widehat{AOD}=\widehat{COA}\)
\(\Leftrightarrow\widehat{AOD}=\widehat{COA}-\widehat{COD}=180^0-75^0\)
hay \(\widehat{AOD}=105^0\)
Vậy: \(\widehat{AOD}=105^0\)
a) \(\widehat{AOB}\) và \(\widehat{BOC}\) kề bù \(\Rightarrow\widehat{AOB}+\widehat{BOC}=180^0\) mà \(\widehat{BOC}=5\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}+5\widehat{AOB}=180^0\Rightarrow6\widehat{AOB}=180^0\\ \Rightarrow\widehat{AOB}=30^0\Rightarrow\widehat{BOC}=150^0\).
b) Do \(OD\) nằm trong góc \(\widehat{BOC}\) \(\Rightarrow\) tia \(OD\) nằm giữa hai tia \(OB,OC\)
\(\Rightarrow\)tia \(OB\) và tia \(OA\) nằm cùng phía nhau so với tia \(OD\)
\(\Rightarrow\) tia \(OB\) nằm giữa hai tia \(OA,OD\)
\(\Rightarrow\widehat{AOD}=\widehat{AOB}+\widehat{BOD}=30^0+75^0=105^0\).
c) Nếu chỉ xét trường hợp các góc tạo bởi hai tia liên tiếp nhau:
Trên nửa mặt phẳng bờ \(AC\) có \(n+4\) tia (gồm \(4\) tia \(OA,OB,OC,OD\) và \(n\) tia vẽ thêm).
Cứ hai tia cạnh nhau tạo thành 1 góc
\(\Rightarrow\) Ta có \(n+3\) góc.