K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2019

\(\overrightarrow{u}+\overrightarrow{v}=\left(1+2;2-3\right)=\left(3;-1\right)\)

\(\overrightarrow{u}-\overrightarrow{v}=\left(1-2;2+3\right)=\left(-1;5\right)\)

\(2\overrightarrow{u}=\left(2;4\right)\)

\(3\overrightarrow{v}=\left(6;-9\right)\)

\(2\overrightarrow{u}+3\overrightarrow{v}=\left(2+6;4-9\right)=\left(8;-5\right)\)

NV
3 tháng 10 2021

Theo tính chất trọng tâm ta có: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

Mặt khác AM là trung tuyến nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)\Rightarrow3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\) (1)

K là trung điểm AB, N là trung điểm AC nên: \(\left\{{}\begin{matrix}\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}\\\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=2\overrightarrow{AK}\\\overrightarrow{AC}=2\overrightarrow{AN}\end{matrix}\right.\) (2)

(1);(2) \(\Rightarrow3\overrightarrow{AG}=2\left(\overrightarrow{AK}+\overrightarrow{AN}\right)\)

NV
3 tháng 10 2021

undefined

25 tháng 8 2021

c1 ta có vector AB+vecAC+vecBC=vec0

c2ta co vector OA=-vector OB AOB thẳng hàng nhưng ngược chiều=>vector OA+vectorOB=vectorOA-vector OA=vec0

hojk tốt=>>>>>>>>>>>>>>>>>>>>>>>>>

 

14 tháng 12 2016

1) Các vecto bằng vecto EF là:

\(\overrightarrow{EF}=\overrightarrow{DO}=\overrightarrow{OA}=\overrightarrow{CB}\)

17 tháng 10 2021

\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}\)

\(=\overrightarrow{AC}+\overrightarrow{CA}\)

\(=\overrightarrow{0}\)

14 tháng 8 2019

     Mình không biết trả lời.Mình mới học lớp 5 thôi .Mong bạn thông cảm nhé!

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Đề bài có vấn đề. Bạn coi lại 

4 tháng 8 2019

A B C P M N

a) \(\overrightarrow{PM}=\overrightarrow{PB}+\overrightarrow{BM}=\frac{1}{2}\overrightarrow{AB}+2\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=2\overrightarrow{AC}-\frac{3}{2}\overrightarrow{AB}\)

Do \(\overrightarrow{NA}+2\overrightarrow{NC}=\overrightarrow{0}\)nên N thuộc đoạn AC và \(\overrightarrow{AN}=\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{PN}=\overrightarrow{PA}+\overrightarrow{AN}=-\frac{1}{2}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

b) Ta thấy \(\overrightarrow{PN}=\frac{1}{3}\left(2\overrightarrow{AC}-\frac{3}{2}\overrightarrow{AB}\right)=\frac{1}{3}\overrightarrow{PM}\). Suy ra M,N,P thẳng hàng (đpcm).

15 tháng 11 2021

a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-4\\-x+4y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-4\\-2x+8y=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=10\\-x+4y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy: \(\overrightarrow{C}=\overrightarrow{a}+2\overrightarrow{b}\)