K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

Chọn C

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm? a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0 2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C') 3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối...
Đọc tiếp

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm?

a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0

2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C')

3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến the \(\overrightarrow{v}=\left(2;3\right)\) biến điểm M thành điểm nào trg các điểm sau?

a. (1;3) b. (2;0) c. (0;2) d. (4;4)

4. Trg mp Oxy cho đt d có pt: x + y - 2 = 0. Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(3;2\right)\) biến đt d thành đt nà trg các đt sau?

a. 3x + 3y - 2 = 0 b. x - y + 2 = 0 c. x + y + 2 = 0 d. x + y - 3 = 0

5. Trg mp Oxy cho đt (C) có pt: \(\left(x-1\right)^2+\left(y+2\right)^2=4\). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối cứng qua tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(2;3\right)\) biến (C) thành đt nào trg các đt có pt sau?

a. \(x^2+y^2=4\) b. \(\left(x-2\right)^2+\left(y-6\right)^2=4\) c. \(\left(x-2\right)^2+\left(x-3\right)^2=4\) d. Đáp án khác

0
NV
7 tháng 10 2020

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow3x-2y+1=0\) (1)

Gọi M' là ảnh của M qua phép quay Q

\(\Rightarrow\left\{{}\begin{matrix}x'=x.cos\left(-90^0\right)-y.sin\left(-90^0\right)=y\\y'=x.sin\left(-90^0\right)+ycos\left(-90^0\right)=-x\end{matrix}\right.\)

Thế vào (1): \(-3y'-2x'+1=0\Leftrightarrow2x'+3y'-1=0\)

Vậy ảnh của d là đường thẳng \(2x+3y-1=0\)

Đường tròn (C) tâm \(I\left(2;1\right)\) bán kính \(R=4\)

Gọi I' là ảnh của I qua phép quay Q

\(\Rightarrow\left\{{}\begin{matrix}x_{I'}=2.cos\left(-90\right)-1.sin\left(-90\right)=1\\y_{I'}=2sin\left(-90\right)+1.cos\left(-90\right)=-2\end{matrix}\right.\) \(\Rightarrow I'\left(1;-2\right)\)

Ảnh của (C) có pt: \(\left(x-1\right)^2+\left(y+2\right)^2=4\)

NV
19 tháng 8 2020

Gọi \(I\left(-1;2\right)\) là tâm đường tròn (C)

\(\overrightarrow{AB}=\left(2;2\right)\)

Gọi I' là ảnh của I qua phép tịnh tiến \(\overrightarrow{AB}\Rightarrow I'\left(1;4\right)\)

Phương trình (C') là ảnh của (C) qua phép tịnh tiến nói trên là:

\(\left(x-1\right)^2+\left(y-4\right)^2=4\)