Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABO và ΔDCO có
\(\widehat{BAO}=\widehat{CDO}\)(gt)
\(\widehat{AOB}=\widehat{DOC}\)(hai góc đối đỉnh)
Do đó: ΔABO∼ΔDCO(g-g)
b) Ta có: ΔABO∼ΔDCO(cmt)
⇒\(\dfrac{OB}{OC}=\dfrac{OA}{OD}\)(Các cặp cạnh tương ứng tỉ lệ)
⇔\(\dfrac{OB}{OA}=\dfrac{OC}{OD}\)
Xét ΔBCO và ΔADO có
\(\dfrac{OB}{OA}=\dfrac{OC}{OD}\)(cmt)
\(\widehat{BOC}=\widehat{AOD}\)(hai góc tương ứng)
Do đó: ΔBCO∼ΔADO(c-g-c)
Bài 2:
Nếu cả bốn góc trong một tứ giác đều là góc nhọn thì tổng của bốn góc đó sẽ nhỏ hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Nếu cả bốn góc trong một tứ giác đều là góc tù thì tổng của bốn góc đó sẽ lớn hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Ta có đpcm
1) Xét ΔABC và ΔCDA có
AB=CD(gt)
\(\widehat{BAC}=\widehat{DCA}\)(hai góc so le trong, AB//CD)
AC chung
Do đó: ΔABC=ΔCDA(c-g-c)
Suy ra: \(\widehat{ACB}=\widehat{CAD}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC(Đpcm)