Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC và MN=AC/2(1)
Xét ΔDAC có
P,Q lần lượt là trung điểm của DC,DA
=>PQ là đường trung bình của ΔDAC
=>PQ//AC và PQ=AC/2(2)
Từ (1),(2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
b: Xét ΔACD có
P,I lần lượt là trung điểm của CD,CA
=>PI là đường trung bình của ΔACD
=>PI//AD và \(PI=\dfrac{AD}{2}\left(3\right)\)
Xét ΔBAD có
M,K lần lượt là trung điểm của BA,BD
=>MK là đường trung bình của ΔBAD
=>MK//AD và \(MK=\dfrac{AD}{2}\left(4\right)\)
Từ (3) và (4) suy ra MK//IP và MK=IP
Xét tứ giác MKPI có
MK//PI
MK=PI
Do đó: MKPI là hình bình hành
=>MP cắt KI tại trung điểm của mỗi đường(5)
Ta có: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường(6)
Từ (5),(6) suy ra MP,KI,NQ đồng quy
Trên tia đối của PB lấy H sao cho BP = PH
ΔBPC và ΔHPD có:
BP = HP (cách vẽ)
\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)
PC = PD (gt)
Do đó, ΔBPC=ΔHPD(c.g.c)
=> BC = DH (2 cạnh t/ứng)
và \(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD
ΔABH có: M là trung điểm của AB (gt)
P là trung điểm của BH (vì HP = BP)
Do đó MP là đường trung bình của ΔABH
\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH
\(\Rightarrow2MP=AH\)
Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)
\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))
\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)
Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)
Do đó, \(AD+DH=AH\)
=> A,D,H thẳng hàng
Mà HD // BC (cmt) nên AD // BC
Tương tự: AB // CD
Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)
Do đó, ABCD là hình bình hành
a: Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD
=>MQ là đường trung bình
=>MQ//BD và MQ=BD/2
Xét ΔCBD có
P,N lần lượt là trung điểm của CD,CB
=>PN là đường trung bình
=>PN//BD và PN=BD/2
=>MQ//PN và MQ=PN
Xét tứ giác MNPQ có
MQ//PN
MQ=PN
=>MNPQ là hình bình hành
Xét ΔCAB có
I,N lần lượt là trung điểm của CA,CB
=>IN là đường trung bình
=>IN//AB và IN=AB/2
Xét ΔDAB có K,Q lần lượt là trung điểm của DB,DA
=>KQ là đường trung bình
=>KQ//AB và KQ=AB/2
=>IN//KQ và IN=KQ
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường(1)
INKQ là hình bình hành
=>IK cắt NQ tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra MP,NQ,IK đồng quy