K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

2 tháng rồi bạn có biết kết quả chưa vậy

8 tháng 9 2017

dùng biểu thức vectơ bạn ơi

16 tháng 7 2018

mk lớp 6 nên ko bt

a: XétΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC
=>MN//AC và MN=AC/2(1)

Xét ΔDAC có

P,Q lần lượt là trung điểm của DC,DA

=>PQ là đường trung bình của ΔDAC

=>PQ//AC và PQ=AC/2(2)

Từ (1),(2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

b: Xét ΔACD có

P,I lần lượt là trung điểm của CD,CA

=>PI là đường trung bình của ΔACD

=>PI//AD và \(PI=\dfrac{AD}{2}\left(3\right)\)

Xét ΔBAD có

M,K lần lượt là trung điểm của BA,BD

=>MK là đường trung bình của ΔBAD

=>MK//AD và \(MK=\dfrac{AD}{2}\left(4\right)\)

Từ (3) và (4) suy ra MK//IP và MK=IP

Xét tứ giác MKPI có

MK//PI

MK=PI

Do đó: MKPI là hình bình hành

=>MP cắt KI tại trung điểm của mỗi đường(5)

Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường(6)

Từ (5),(6) suy ra MP,KI,NQ đồng quy

6 tháng 11 2023

Cảm ơn bạn

 

 

 

 

 

 

11 tháng 9 2021

Trên tia đối của PB lấy H sao cho BP = PH

ΔBPC và ΔHPD có:

BP = HP (cách vẽ)

\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)

PC = PD (gt)

Do đó, ΔBPC=ΔHPD(c.g.c)

=> BC = DH (2 cạnh t/ứng)

\(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD

ΔABH có: M là trung điểm của AB (gt)

P là trung điểm của BH (vì HP = BP)

Do đó MP là đường trung bình của ΔABH

\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH 

\(\Rightarrow2MP=AH\)

Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)

\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))

\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)

Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)

Do đó, \(AD+DH=AH\)

=> A,D,H thẳng hàng

Mà HD // BC (cmt) nên AD // BC

Tương tự: AB // CD

Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)

Do đó, ABCD là hình bình hành 

 

a: Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD

=>MQ là đường trung bình

=>MQ//BD và MQ=BD/2

Xét ΔCBD có

P,N lần lượt là trung điểm của CD,CB 

=>PN là đường trung bình

=>PN//BD và PN=BD/2

=>MQ//PN và MQ=PN

Xét tứ giác MNPQ có

MQ//PN

MQ=PN

=>MNPQ là hình bình hành

Xét ΔCAB có

I,N lần lượt là trung điểm của CA,CB

=>IN là đường trung bình

=>IN//AB và IN=AB/2

Xét ΔDAB có K,Q lần lượt là trung điểm của DB,DA

=>KQ là đường trung bình

=>KQ//AB và KQ=AB/2

=>IN//KQ và IN=KQ

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường(1)

INKQ là hình bình hành

=>IK cắt NQ tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra MP,NQ,IK đồng quy

26 tháng 9 2019

Tương tự bài 3A