K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1:

a; Xét ΔOAE và ΔOCB có

\(\hat{OAE}=\hat{OCB}\) (hai góc so le trong, AE//BC)

\(\hat{AOE}=\hat{COB}\) (hai góc đối đỉnh)

Do đó: ΔOAE~ΔOCB

=>\(\frac{OA}{OC}=\frac{OE}{OB}\)

b: Xét ΔOBF và ΔODA có

\(\hat{OBF}=\hat{ODA}\) (hai góc so le trong, BF//DA)

\(\hat{BOF}=\hat{DOA}\) (hai góc đối đỉnh)

Do đó: ΔOBF~ΔODA

=>\(\frac{OB}{OD}=\frac{OF}{OA}\)

=>\(OB\cdot OA=OD\cdot OF\) (1)

ta có: \(\frac{OA}{OC}=\frac{OE}{OB}\)

=>\(OA\cdot OB=OE\cdot OC\) (2)

Từ (1),(2) suy ra \(OD\cdot OF=OE\cdot OC\)

c: \(OD\cdot OF=OE\cdot OC\)

=>\(\frac{OE}{OD}=\frac{OF}{OC}\)

Xét ΔODC có \(\frac{OE}{OD}=\frac{OF}{OC}\)

nên EF//DC
Bài 2:

a: Gọi E,F lần lượt là trung điểm của DA,BC

Xét ΔDAB có

E,M lần lượt là trung điểm của DA,DB

=>EM là đường trung bình của ΔDAB

=>EM//AB và \(EM=\frac{AB}{2}\)

Xét ΔCAB có

N,F lần lượt là trung điểm của CA,CB

=>NF là đường trung bình của ΔCAB

=>NF//AB và \(NF=\frac{AB}{2}\)

Xét hình thang ABCD có

E,F lần lượt là trung điểm của AD,BC

=>EF là đường trung bình của hình thang ABCD

=>EF//AB//CD và \(EF=\frac{AB+CD}{2}\)

Ta có: EF//AB

EM//AB

mà EM,EF có điểm chung là E

nên E,M,F thẳng hàng(1)

Ta có: EF//AB

NF//AB

mà EF,NF có điểm chung là F

nên E,F,N thẳng hàng(2)

Từ (1),(2) suy ra E,M,F,N thẳng hàng

=>MN//AB

b: Xét ΔOAB và ΔOCD có

\(\hat{OAB}=\hat{OCD}\) (hai góc so le trong, AB//CD)

\(\hat{AOB}=\hat{COD}\) (hai góc đối đỉnh)

Do đó: ΔOAB~ΔOCD

=>\(\frac{OA}{OC}=\frac{OB}{OD}\)

=>\(\frac{OA}{OB}=\frac{OC}{OD}=\frac{OA+OC}{OB+OD}=\frac{AC}{BD}=\frac{2\cdot NC}{2\cdot MD}=\frac{NC}{MD}\)

c: Ta có: EM+MN+NF=EF

=>\(\frac{AB}{2}+\frac{AB}{2}+MN=\frac{AB+CD}{2}\)

=>\(MN=\frac{CD+AB}{2}-\frac{2AB}{2}=\frac{CD-AB}{2}\)

bài 1:

a; Xét ΔOAE và ΔOCB có

\(\hat{OAE}=\hat{OCB}\) (hai góc so le trong, AE//BC)

\(\hat{AOE}=\hat{COB}\) (hai góc đối đỉnh)

Do đó: ΔOAE~ΔOCB

=>\(\frac{OA}{OC}=\frac{OE}{OB}\)

b: Xét ΔOBF và ΔODA có

\(\hat{OBF}=\hat{ODA}\) (hai góc so le trong, BF//DA)

\(\hat{BOF}=\hat{DOA}\) (hai góc đối đỉnh)

Do đó: ΔOBF~ΔODA

=>\(\frac{OB}{OD}=\frac{OF}{OA}\)

=>\(OB\cdot OA=OD\cdot OF\) (1)

ta có: \(\frac{OA}{OC}=\frac{OE}{OB}\)

=>\(OA\cdot OB=OE\cdot OC\) (2)

Từ (1),(2) suy ra \(OD\cdot OF=OE\cdot OC\)

c: \(OD\cdot OF=OE\cdot OC\)

=>\(\frac{OE}{OD}=\frac{OF}{OC}\)

Xét ΔODC có \(\frac{OE}{OD}=\frac{OF}{OC}\)

nên EF//DC
Bài 2:

a: Gọi E,F lần lượt là trung điểm của DA,BC

Xét ΔDAB có

E,M lần lượt là trung điểm của DA,DB

=>EM là đường trung bình của ΔDAB

=>EM//AB và \(EM=\frac{AB}{2}\)

Xét ΔCAB có

N,F lần lượt là trung điểm của CA,CB

=>NF là đường trung bình của ΔCAB

=>NF//AB và \(NF=\frac{AB}{2}\)

Xét hình thang ABCD có

E,F lần lượt là trung điểm của AD,BC

=>EF là đường trung bình của hình thang ABCD

=>EF//AB//CD và \(EF=\frac{AB+CD}{2}\)

Ta có: EF//AB

EM//AB

mà EM,EF có điểm chung là E

nên E,M,F thẳng hàng(1)

Ta có: EF//AB

NF//AB

mà EF,NF có điểm chung là F

nên E,F,N thẳng hàng(2)

Từ (1),(2) suy ra E,M,F,N thẳng hàng

=>MN//AB

b: Xét ΔOAB và ΔOCD có

\(\hat{OAB}=\hat{OCD}\) (hai góc so le trong, AB//CD)

\(\hat{AOB}=\hat{COD}\) (hai góc đối đỉnh)

Do đó: ΔOAB~ΔOCD

=>\(\frac{OA}{OC}=\frac{OB}{OD}\)

=>\(\frac{OA}{OB}=\frac{OC}{OD}=\frac{OA+OC}{OB+OD}=\frac{AC}{BD}=\frac{2\cdot NC}{2\cdot MD}=\frac{NC}{MD}\)

c: Ta có: EM+MN+NF=EF

=>\(\frac{AB}{2}+\frac{AB}{2}+MN=\frac{AB+CD}{2}\)

=>\(MN=\frac{CD+AB}{2}-\frac{2AB}{2}=\frac{CD-AB}{2}\)

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF

 

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
21 tháng 11 2021

Mọi người giải giúp mình ạ, mình cảm ơn nhiều <333

21 tháng 11 2021

Không bít giải xin lũi bn nha :(