Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm hai đường chéo AC và BD
- Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :
\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
- Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :
\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
a: góc OAB=góc ADC
góc OBA=góc BCD
mà góc ADC=góc BCD
nên góc OAB=góc OBA
=>OA=OB
OA+AD=OD
OB+BC=OC
mà OA=OB và AD=BC
nên OD=OC
b: Xét ΔABD và ΔBAC có
AB chung
BD=AC
AD=BC
=>ΔABD=ΔBAC
=>góc IAB=góc IBA
=>IA=IB
=>IC=ID
OA=OB và IA=IB
=>OI là trung trực của AB
OC=OD
IC=ID
=>OI là trung trực của CD
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OD>DC\)
\(OD+OA>AD\)
Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)
\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )
Theo bất đẳng thức tam giác ta có:
\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)
Cộng vế theo vế ta có:
\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)
\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra đpcm.
xét tam giác OAB có:
AB< OA + OB ( quan hệ giữa các cạnh trong tam giác) (1)
Xét tam giác OBC có:
BC< OB+ OC ( quan hệ giữa các canh trong tam giác) (2)
Xét tam giác OCD có:
CD< OC+ OD ( quan hệ giữa các cạnh trg tam giác) (3)
Xét tam giác ODA có:
DA< OD+ OA ( quan hệ giữa các cạnh trg tam giác) (4)
Từ (1), (2), (3), (4) => AB+ BC+ CD+ DA< 2OA+ 2OB+ 2OC+ 2OD
=> (AB+ BC+ CD+ DA) : 2 < OA+ OB+ OC+ OD (ĐPCM)