Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC
mà AC\(\perp\)BD
nên MN\(\perp\)BD
hay MN\(\perp\)MQ
Xét tứ giác MQPN có
MQ//NP
MQ=NP
Do đó: MQPN là hình bình hành
mà \(\widehat{QMN}=90^0\)
nên MQPN là hình chữ nhật
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔACD có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔACD
Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hbh
cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.
a) tứ giác MNPQ là hình gì ? vì sao?
MN//BD; PQ//BD
NP//AC; QM//AC
=>MN//PQNP//QNMNPQ la hbbh
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//PN và MQ=PN
=>MNPQ là hình bình hành
Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
=>MN vuông góc với NP
=>MNPQ là hình chữ nhật
b: Để MNPQ là hình vuông thì MN=NP
=>AC=BD
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔADC có
Q là trung điểm của AD(gt)
P là trung điểm của CD(gt)
Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ(cmt)
MN=PQ(cmt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABD có
M là trung điểm của AB(gt)
Q là trung điểm của AD(gt)
Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)
Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)
Hình bình hành MNPQ trở thành hình vuông khi
a,Ta có:M là trung điểm AB(gt)
N là trung điểm BC(gt)
=>MN là đường trung bình tam giác ABC.
=>MN//AC và MN=1/2AC (1)
Lại có:Q là trung điểm AD(gt)
P là trung điểm DC(gt)
=>QP là đường trung bình tam giác ADC.
=>QP//AC và QP=1/2AC(2)
Từ (1)và(2)
=>MN//QP và MN=QP
=>Tứ giác MNPQ là hình bình hành.
b, <=> Góc M1 = 90°
Mà MN//AC => góc K1 = 90°
NP//MQ => góc O1 = 90°
hay AC⊥BD
Vậy tứ giác ABCD có AC⊥BD thì MNPQ là hình chữ nhật
a ) Xét \(\Delta\)ABD có :
\(\Rightarrow\)QM là đường trung bình của \(\Delta\)ABD
\(\Rightarrow\)QM // BD và QM = BD / 2 ( 1 )
Xét \(\Delta\)DBC có :
\(\Rightarrow\)PN là\(\Rightarrow\) đường trung bình của \(\Delta\)DBC
\(\Rightarrow\)PN // BD và PN = BD / 2 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)◇QMCP là hình bình hành( 3 )
b ) Xét \(\Delta\)ACD có :
\(\Rightarrow\)QP là đường trung bình của \(\Delta\)ACD
\(\Rightarrow\)QP // AC
Mà ta có : AC \(\perp\)BD
\(\Rightarrow\)QP \(\perp\)BD
Ta lại có :
QP \(\perp\)BD
PN // BD
\(\Rightarrow\)QP \(\perp\)PN ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)◇QMNP là hình chữ nhật