K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

a,Ta có:M là trung điểm AB(gt)

N là trung điểm BC(gt)

=>MN là đường trung bình tam giác ABC.

=>MN//AC và MN=1/2AC (1)

Lại có:Q là trung điểm AD(gt)

P là trung điểm DC(gt)

=>QP là đường trung bình tam giác ADC.

=>QP//AC và QP=1/2AC(2)

Từ (1)và(2)

=>MN//QP và MN=QP

=>Tứ giác MNPQ là hình bình hành.

b, <=> Góc M1 = 90°
Mà MN//AC => góc K1 = 90°
NP//MQ => góc O1 = 90°
hay AC⊥BD
Vậy tứ giác ABCD có AC⊥BD thì MNPQ là hình chữ nhật

13 tháng 11 2019

a ) Xét \(\Delta\)ABD có :

  • Q là trung điểm AD 
  • M là trung điểm AB

\(\Rightarrow\)QM là đường trung bình của \(\Delta\)ABD

\(\Rightarrow\)QM // BD và QM = BD / 2 ( 1 )

Xét \(\Delta\)DBC có :

  • P là trung điểm DC
  • N là trung điểm BC

\(\Rightarrow\)PN là\(\Rightarrow\) đường trung bình của \(\Delta\)DBC

\(\Rightarrow\)PN // BD và PN = BD / 2 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)◇QMCP là hình bình hành( 3 )

b ) Xét \(\Delta\)ACD có :

  • Q là trung điểm AD
  • P là trung điểm DC

\(\Rightarrow\)QP là đường trung bình của \(\Delta\)ACD

\(\Rightarrow\)QP // AC

Mà ta có : AC \(\perp\)BD

\(\Rightarrow\)QP \(\perp\)BD

Ta lại có :

QP \(\perp\)BD

PN // BD

\(\Rightarrow\)QP \(\perp\)PN ( 4 ) 

Từ ( 3 ) và ( 4 ) \(\Rightarrow\)◇QMNP là hình chữ nhật

25 tháng 10 2021

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC

mà AC\(\perp\)BD

nên MN\(\perp\)BD

hay MN\(\perp\)MQ

Xét tứ giác MQPN có

MQ//NP

MQ=NP

Do đó: MQPN là hình bình hành

mà \(\widehat{QMN}=90^0\)

nên MQPN là hình chữ nhật

25 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó:MN là đường trung bình của ΔBAC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔACD có 

P là trung điểm của CD

Q là trung điểm của DA

Do đó: PQ là đường trung bình của ΔACD

Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hbh

cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.

a) tứ giác MNPQ là hình gì ? vì sao?

MN//BD; PQ//BD

NP//AC; QM//AC

=>MN//PQNP//QNMNPQ la hbbh

18 tháng 12 2022

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN vuông góc với NP

=>MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì MN=NP

=>AC=BD

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có 

Q là trung điểm của AD(gt)

P là trung điểm của CD(gt)

Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có 

MN//PQ(cmt)

MN=PQ(cmt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b)

Xét ΔABD có 

M là trung điểm của AB(gt)

Q là trung điểm của AD(gt)

Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)

Hình bình hành MNPQ trở thành hình vuông khi