Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)
b: \(\overrightarrow{NA}+\overrightarrow{ND}=\overrightarrow{0}\)
1.
a, Trọng Tâm G: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{8}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Rightarrow G=\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)
b, \(ABCD\) là hình bình hành \(\Leftrightarrow\vec{AB}=\vec{DC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_B-x_A=x_C-x_D\\y_B-y_A=y_C-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=0\\y_D=6\end{matrix}\right.\)
\(\Rightarrow D=\left(0;6\right)\)
c, \(\vec{AM}=3\vec{BC}\Leftrightarrow\left\{{}\begin{matrix}x_M=x_A+3\left(x_C-x_B\right)=-6\\y_M=y_A+3\left(y_C-y_B\right)=14\end{matrix}\right.\)
\(\Rightarrow M=\left(-6;14\right)\)
Ta có: \(AM = BM = CN = DN,AN = BN = CM = DM\). Từ đó suy ra
\(\left| {AM - AN} \right| = \left| {BM - BN} \right| = \left| {CM - CN} \right| = \left| {DM - DN} \right| \).
Và \(\left| {AM - AN} \right| <MN\) (bất đẳng thức trong tam giác)
Vậy bốn điểm \(A,B,C,D\) cùng thuộc một đường hyperbol với M,N là hai tiêu điểm.
Gọi I là trung điểm MN \(\Rightarrow I\left(-\dfrac{1}{2};\dfrac{1}{2}\right)\)
\(\overrightarrow{NM}=\left(3;1\right)\Rightarrow\) đường thẳng AC qua I và vuông góc MN có dạng:
\(3\left(x+\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x+y+1=0\)
A thuộc AC nên tọa độ có dạng: \(A\left(a;-3a-1\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(1-a;3a+2\right)\\\overrightarrow{AN}=\left(-2-a;3a+1\right)\end{matrix}\right.\)
\(\overrightarrow{AM}.\overrightarrow{AN}=0\Leftrightarrow\left(1-a\right)\left(-2-a\right)+\left(3a+2\right)\left(3a+1\right)=0\)
\(\Rightarrow\) Giải pt ra \(a\Rightarrow\) tọa độ A
\(\Rightarrow\) Tọa độ B (tính qua N là trung điểm AB) và tọa độ D (tính qua M là trung điểm AD)
\(\Rightarrow\) Tọa độ C (tính dựa trên \(\overrightarrow{AB}=\overrightarrow{DC}\))
a) N trung điểm AD \(\Rightarrow AN=\frac{AD}{2}=\frac{BC}{2}\)
M trung điểm BC \(\Rightarrow MC=\frac{BC}{2}\Rightarrow AN=MC\)mà AN//MC
nên AMCN là hình bình hành \(\Rightarrow\overrightarrow{AM}=\overrightarrow{NC}\)
b) Tương tự câu a ta được \(\hept{\begin{cases}ND=BM=\frac{1}{2}BC\\ND//BM\end{cases}}\)=> NDMB là hình bình hành=> NB//DM (1)
Xét 2 tam giác ANI và NDK: \(\hept{\begin{cases}AN=ND=\frac{AD}{2}\\\widehat{NAI}=\widehat{DNK}\left(AM//NC\right)\\\widehat{ANI}=\widehat{NDK}\left(NB//MD\right)\end{cases}\Rightarrow\Delta ANI=\Delta NDK\left(g.c.g\right)}\)
\(\Rightarrow NI=DK\)(2)
(1), (2) => \(\overrightarrow{NI}=\overrightarrow{DK}\)