Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì N là trung điểm BD và AC nên ABCD là hbh
Vì M là trung điểm CE và AB nên AEBC là hbh
b, Vì ABCD và AEBC là hbh nên \(\left\{{}\begin{matrix}AE//BC;AE=BC\\AD//BC;AD=BC\end{matrix}\right.\Rightarrow AE\equiv AD;AE=AD\)
Vậy E đx D qua A
a/ M là trung điểm AC, D đối xứng với B qua M hay M là trung điểm BD
Vậy: ABCD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành) (đpcm)
===========
b/ N đối xứng với A qua E hay E là trung điểm AN
CE // AD (do CE thuộc BC, ABCD là hình bình hành)
⇒ CE là đường trung bình của △NAB ⇒ C là trung điểm ND
Vậy: D đối xứng với N qua C (đpcm)
a: Xét tứ giác ABCD có
M là trung điểm của đường chéo AC
M là trung điểm của đường chéo BD
Do đó: ABCD là hình bình hành
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
a. Vì tam giác ABC có trung tuyến BM (gt)
-> M là trung điểm AC
Vì D đối xứng với B qua M (gt)
-> M là trung điểm BD
xét tứ giác ABCD có : - M là trung điểm AC (cmt)
- M là trung điểm BD (cmt)
=> tứ giác ABCD là hình bình hành
b) Vì tam giác ABC có trung tuyến CN(gt)
-> N là trung điểm AB
Vì E đối xứng với C qua N (gt)
-> N là trung điểm EC
xét tứ giác AEBC có : - N là trung điểm AB (cmt)
- N là trung điểm EC (cmt)
-> tứ giác AEBC là hình bình hành
=> AE // BC ( tính chất )
c)Vì tứ giác ABCD là hình bình hành ( cmt )
-> AD = BC (tính chất) (1)
Vì tứ giác AEBC là hình bình hành ( cmt )
-> AE = BC (2)
từ (1) và (2) => AE = AD
=> A là trung điểm ED
=> E đối xứng vói D qua A