Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi P và Q lần lượt là trung điểm của AC' và CA'.
CC' giao MN tại I
Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC
=> PM là đường trung bình tam giác AC'C => PM//CC'
hay C'I//PM
C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)
Mà P là trung điểm AC' => C' là trung điểm PN.
Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN
=> CC' đi qua trung điểm của MN (1)
Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)
Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)
Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).
Bn ơi!
Chứng minh AA' đi qua trung điểm MN làm cách nào vậy ạ!
a) G là trọng tâm của ABCD <=> vtGA + vtGB + vtGC + vtGD = vt0 (1*)
A' là trọng tâm của BCD <=> vtA'B + vtA'C + vtA'D = vt0
<=> 3.vtA'G + vtGB + vtGC + vtGD = vt0 (2*) (chen điểm G vào biểu thức trên)
lấy (1*) - (2*): vtGA - 3.vtA'G = vt0 <=> vtGA = 3.vtA'G
đẳng thức này chứng tỏ vtGA và vtA'G cùng hướng => G nằm trên đoạn AA'
tương tự có B' là trọng tâm của ACD <=> 3.vtB'G + vtGA + vtGC + vtGD = vt0 (3*)
lấy (1*) - (3*): vtGB - 3vtB'G = vt0 <=> vtGB = 3vtB'G
=> G nằm trên đoạn BB'
tiếp tục cho 2 phần còn lại
=> G là điểm chung của các đoạn AA', BB', CC', DD'
b) từ biểu thức trên có: vtGA = -3.vtGA'
=> G chia đoạn AA' theo tỉ số k = -3
các đoạn kia tương tự đều cùng tỉ số k = -3
c) từ cm trên ta có:
vtGA = -3vtGA'
vtGB = -3vtGB'
vtGC = -3vtGC'
vtGD = -3vtGD'
=> vtGA+vtGB+vtGC+vtGD+vtGD = -3(vtGA'+vtGB'+vtGC'+vtGD') (**)
mà G là trọng tâm của ABCD nên vtGA+vtGB+vtGC+vtGD = vt0
(**) => vtGA'+vtGB'+vtGC'+vtGD' = vt0 => G là trọng tâm của A'B'C'D'
I don't now
sorry
.....................
bn tham khảo ở đây nhé :
https://olm.vn/hoi-dap/question/1016726.html
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
Đề bài của bạn không đúng bạn nhé.
Gọi \(M,N\)lần lượt là trung điểm \(AC,BD\).
Dễ thấy \(AG_1,CG_3\)cắt nhau tại \(N\). \(BG_2,DG_4\)cắt nhau tại \(M\).
Do đó để \(AG_1,BG_2,CG_3,DG_4\)đồng quy thì \(M\)và \(N\)phải trùng nhau, điều này không đúng với điều kiện \(ABCD\)là tứ giác.
Bài toán sẽ đúng với "tứ diện" \(ABCD\).
Cho tứ giác ABCD