K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

tam giac ABC co 

M la trung diem AB

N la trung diem BC

suy raMNla duong trung binh cau tam giac ABC(1)

tam giac ADC co

Q la trung diem AD 

P la trung diem DC

suy ra PQ la duong trung binh cua tam giac ADC(2)

tu 1,2 suy ra MN song song PQ

suy ra MNPQ la hbh

22 tháng 12 2021

AI GIUP MIK DC KO AK MIK DG CAN GAP

22 tháng 12 2021

a: Xét tứ giác MHPQ có 

MH//PQ

MH=PQ

Do đó: MHPQ là hình bình hành

mà MH=MQ

nên MHPQ là hình thoi

21 tháng 12 2018

Đề có sai không vậy bạn ?? Tứ giác ABCD phải là hình thang cân chứ ???

21 tháng 12 2018

de bai dung do ban xem lai gium minh di

12 tháng 11 2017

youtube.com/c/AnimeVietsubchannel

23 tháng 12 2017

xét tam giác abc có m là tđ của ab

                                n là tđ của ac                  => mn là đtb=>mn//bc

xét tam giác dbc có q là td của bd

                                p là tđ của dc                   =>qp là đtb =>qp//bc

=>mn//qp

c/m tương tự để mq//np

=.>mnpq là hbh

23 tháng 12 2017

\(\Delta ABD\) có  MA = MB;  QB = QD

\(\Rightarrow\)MQ là đường trung bình của \(\Delta ABD\)

\(\Rightarrow\)MQ // AD;  MQ = 1/2 AD            (1)

\(\Delta CAD\)có  NA = NC;  PC = PD

\(\Rightarrow\)NP là đường trung bình của \(\Delta CAD\)

\(\Rightarrow\)NP // AD;  NP = 1/2 AD             (2)

Từ  (1)  và  (2)  suy ra:   MQ = NP;  MQ // NP

\(\Rightarrow\)Tứ giác MNPQ là hình bình hành

ABCD là hình thang cân \(\Rightarrow\) AD = BC

CM:    MN = PQ = 1/2 BC    (do MN, PQ là đường trung bình của \(\Delta ABC\)và  \(\Delta DBC\))

mà   MQ = NP = 1/2 AD

\(\Rightarrow\)MQ = MN

\(\Rightarrow\)hình bình hành MNPQ là hình thoi

a) ta có: ABCD là hình bình hành => AB // CD và AB = CD

mà E là trung điểm của AB ; F là trung điểm của CD

AE = EB = CF = DF (1)

vì AB // CD => EB // DF (2)

từ (1) và (2) => tứ giác DEBF là hình bình hành (đccm)

b) hình bình hành ABCD có:

AC cắt BD tại trung điểm của mỗi đường (1)

xét hình bình hành DEBF có EF cắt BD tại trung điểm mỗi đường (2)
từ (1) và (2) => AC ; BD ; EF đồng quy

c) gọi O là giao điểm của AC ; BD ; EF

xét \(\Delta EOM\) và \(\Delta NOF\) có:

góc EOM = góc NOF (đối đỉnh)

OE = OF 

góc MEF = góc NFE (CE // BF)
=> tam giác EOM = tam giác NOF (g.c.g)
=> ME = NF

ta có: ME // NF

=> tứ giác EMFN là hbh (đccm)

chúc bạn học tốt!! ^^

564576767568768769535737476575678567856856876876697634524545346456457645765756567563

1 tháng 10 2017

tu giac emfn