Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M,N là trung điểm của AB,BC
Suy ra : MN là đường trung bình của Tam giác ABC
Suy ra : MN = AC chia 2 và MN // EF
C/m tương tự : MF // NE
a:
Xét hình thang MNEF có
A là trung điểm của MF
B là trung điểm của NE
Do đó: AB là đường trung bình của hình thang MNEF
Suy ra: AB//MN//FE
Xét ΔFMN có
A là trung điểm của MF
AJ//MN
Do đó: J là trung điểm của NF
Xét ΔFMN có
A là trung điểm của MF
J là trung điểm của NF
Do đó: JA là đường trung bình của ΔFMN
Suy ra: \(AJ=\dfrac{MN}{2}\left(1\right)\)
Xét ΔEMN có
B là trung điểm của NE
BI//MN
Do đó: I là trung điểm của ME
Xét ΔEMN có
B là trung điểm của NE
I là trung điểm của ME
Do đó: BI là đường trung bình của ΔEMN
Suy ra: \(BI=\dfrac{MN}{2}\left(2\right)\)
Từ (1) và (2) suy ra AJ=BI
hay AI=BJ
Bài 3:
a: Xét hình thang ABCD có
M là trung điểm của AD
N là trung điểm của BC
Do đó: MN là đường trung bình của hình thang ABCD
Suy ra: \(MN=\dfrac{AB+CD}{2}=7,5\left(cm\right)\)
Xét ΔNAB có
F là trung điểm của NB
M là trung điểm của AB
Do đó: FM là đường trung bình của ΔNAB
Suy ra: FM//EN và FM=EN
Xét ΔMDC có
N là trung điểm của DC
G là trung điểm của MC
Do đó: NG là đường trung bình của ΔMDC
Suy ra: NG//MH và NG=MH
Xét tứ giác FMEN có
FM//EN
FM=EN
Do đó: FMEN là hình bình hành
Suy ra: Hai đường chéo EF và MN cắt nhau tại trung điểm của mỗi đường(1)
Xét tứ giác MGNH có
NG//MH
NG=MH
Do đó: MGNH là hình bình hành
Suy ra: Hai đường chéo MN và GH cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra MN,EF,GH đồng quy
Xét ΔCMD có
CN/CD=CH/CM=1/2
=>HN//DM và HN=1/2DM
=>HN=GM và HN=GM
=>HNGM là hình bình hành
=>HG cắt NM tại trung điểm củamỗi đường
Xét ΔNAB có BM/BA=BF/BN=1/2
=>MF//AN và MF=1/2AN
=>MF//NE và MF=NE
=>MFNE là hình bình hành
=>MN,FE cắt nhau tại trung điểm của mỗi đường
=>MN,EF,GH đồng quy