K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Dễ thấy AB=BC=CD=DE

\(ABC\ge CDE=>AC\ge CE\)

Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)

\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)

Cộng theo vế (1) và (2)

\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)

Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều

12 tháng 8 2016

trên tia đối của tia BA lấy điểm B' sao cho góc BB'C=gócADC

tam giác AB'C có :BAC+AB'C+ACB'=180 độ

tam giác ACD có:DAC+D+ACD=180 độ

=>ACB'=ACD

xét tam giác AB'C và tam giác ADC có

B'AC=DAC

AC là cạnh chung

ACB'=ACD

do đó tam giác AB'C= tam giác ADC(g-c-g)

=>DC=B'C(2 cạnh tương ứng)(1)

ta có ABC+D=180 độ (gt)

ABC+B'BC=180 độ(kề bù)

=>góc D=B'BC

mà góc AB'C=D(tam giác AB'C=tam giác ADC)

=>góc B'BC=AB'C(= góc D)

=>tam giác BB'C cân tại C

=>BC=B'C(2)

từ (1) và (2) suy ra :

BC=DC( dpcm)

A B C D

a) Theo giả thiết, ta có:

AD=AB=BCAD=AB=BC và Aˆ+Cˆ=1800A^+C^=1800 

Suy ra tứ giác ABCD là hình vuông

Mà DB là đường chéo của tứ giác ABCD

=> DB là tia phân giác của góc ADC

b) Vì ABCD là hình vuông

{AD=BC(gt)AB//DC

=> ABCD là hình thang cân

Vậy ...

a) Theo giả thiết, ta có:

AD=AB=BCAD=AB=BC và Aˆ+Cˆ=1800A^+C^=180

Suy ra tứ giác ABCD là hình vuông

Mà DB là đường chéo của tứ giác ABCD

=> DB là tia phân giác của góc ADC

b) Vì ABCD là hình vuông

\(\Rightarrow\hept{\begin{cases}AD=BC\left(GT\right)\\AB//DC\end{cases}}\)

=> ABCD là hình thang cân

Vậy ...

Phần trên chưa làm xong bấm nhầm nút gửi nên làm lại 

19 tháng 9 2017

Câu 1: Ta có: 3D = A  => A = 45 x 3 = 135 (độ)

Vì A + D = 180(độ) =>AB // CD  =>  Tứ giác ABCD là hình thang.

Mà B = C   => ABCD là hình thang cân.

Câu 2:  Độ dài cạnh DC là : 3.5 + 1.5 = 4 (cm)

Vì H là đường cao của hình thang ABCD => AH vuông góc với CD.

Tam giác vuông ADH có:

AH ^ 2 + HD ^2 = AD ^ 2

=> 4 + 2.25 = AD ^ 2

=> AD ^ 2 =6.25 =2.5 ^ 2 => AD = 2.5(cm)

Vì ABCD là hình thang cân => AD = BC =2.5(cm)

Ta kẻ BE vuông góc với DC.

Vì tứ giác ABCD là hình thang cân nên

=> Tam giác ADH = Tam giác BCE 

=> HD = EC = 1.5 (cm)

     AH = BE = 2 (cm)

Mặt khác:Xét tam giác vuông AHE và tam giác vuông EBA có :

                       AH = BE (theo c/m trên)

                       AE cạnh chung

=> Tam giác AHE = Tam giác EBA ( Ch - cgv)

=> AB = EH 

Mà EH = HC - HD - EC  =  3.5 -1.5 - 1.5 = 0.5 (cm)

Chu vi của hình thang cân ABCD là:

4 + 2.5 + 2.5 + 0.5 = 9.5

Bài mik hơi dài .... xl bạn