Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy AB=BC=CD=DE
và \(ABC\ge CDE=>AC\ge CE\)
Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)
\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)
Cộng theo vế (1) và (2)
\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)
Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều
trên tia đối của tia BA lấy điểm B' sao cho góc BB'C=gócADC
tam giác AB'C có :BAC+AB'C+ACB'=180 độ
tam giác ACD có:DAC+D+ACD=180 độ
=>ACB'=ACD
xét tam giác AB'C và tam giác ADC có
B'AC=DAC
AC là cạnh chung
ACB'=ACD
do đó tam giác AB'C= tam giác ADC(g-c-g)
=>DC=B'C(2 cạnh tương ứng)(1)
ta có ABC+D=180 độ (gt)
ABC+B'BC=180 độ(kề bù)
=>góc D=B'BC
mà góc AB'C=D(tam giác AB'C=tam giác ADC)
=>góc B'BC=AB'C(= góc D)
=>tam giác BB'C cân tại C
=>BC=B'C(2)
từ (1) và (2) suy ra :
BC=DC( dpcm)
A B C D
a) Theo giả thiết, ta có:
AD=AB=BCAD=AB=BC và Aˆ+Cˆ=1800A^+C^=1800
Suy ra tứ giác ABCD là hình vuông
Mà DB là đường chéo của tứ giác ABCD
=> DB là tia phân giác của góc ADC
b) Vì ABCD là hình vuông
⇒{AD=BC(gt)AB//DC
=> ABCD là hình thang cân
Vậy ...
a) Theo giả thiết, ta có:
AD=AB=BCAD=AB=BC và Aˆ+Cˆ=1800A^+C^=1800
Suy ra tứ giác ABCD là hình vuông
Mà DB là đường chéo của tứ giác ABCD
=> DB là tia phân giác của góc ADC
b) Vì ABCD là hình vuông
\(\Rightarrow\hept{\begin{cases}AD=BC\left(GT\right)\\AB//DC\end{cases}}\)
=> ABCD là hình thang cân
Vậy ...
Phần trên chưa làm xong bấm nhầm nút gửi nên làm lại
Câu 1: Ta có: 3D = A => A = 45 x 3 = 135 (độ)
Vì A + D = 180(độ) =>AB // CD => Tứ giác ABCD là hình thang.
Mà B = C => ABCD là hình thang cân.
Câu 2: Độ dài cạnh DC là : 3.5 + 1.5 = 4 (cm)
Vì H là đường cao của hình thang ABCD => AH vuông góc với CD.
Tam giác vuông ADH có:
AH ^ 2 + HD ^2 = AD ^ 2
=> 4 + 2.25 = AD ^ 2
=> AD ^ 2 =6.25 =2.5 ^ 2 => AD = 2.5(cm)
Vì ABCD là hình thang cân => AD = BC =2.5(cm)
Ta kẻ BE vuông góc với DC.
Vì tứ giác ABCD là hình thang cân nên
=> Tam giác ADH = Tam giác BCE
=> HD = EC = 1.5 (cm)
AH = BE = 2 (cm)
Mặt khác:Xét tam giác vuông AHE và tam giác vuông EBA có :
AH = BE (theo c/m trên)
AE cạnh chung
=> Tam giác AHE = Tam giác EBA ( Ch - cgv)
=> AB = EH
Mà EH = HC - HD - EC = 3.5 -1.5 - 1.5 = 0.5 (cm)
Chu vi của hình thang cân ABCD là:
4 + 2.5 + 2.5 + 0.5 = 9.5
Bài mik hơi dài .... xl bạn