K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

A D B C P M N

Ta thấy : \(\hept{\begin{cases}AD\perp DC\\MP\perp AD\end{cases}}\) \(\Rightarrow PM//DC\)

\(\Rightarrow\frac{MP}{CD}=\frac{AM}{AC}\) ( định lý Talet )

Chứng minh tương tự ta có : \(MN//AB\)

\(\Rightarrow\frac{MN}{AB}=\frac{MC}{AC}\) ( định lý Talet )

Khi đó : \(\frac{MN}{AB}+\frac{MP}{CD}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\) (ĐPCM)

đợi minkf tí

minhf không vẽ hình nha

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
22 tháng 8 2016

a. Xét : \(\Delta ABE,\Delta ACI\)

Có: \(\widehat{BAE}=\widehat{CAI}=90^o\)

\(AB=AC\left(gt\right)\)

Ta có: \(\widehat{ABC}=\widehat{ACI}\) (cùng phụ I)

\(\Rightarrow\Delta ABE=\Delta AIC\left(g.c.g\right)\Rightarrow\begin{cases}CI=BE\\AE=AI\end{cases}\)

b. Lại có: \(AE=AD\left(gt\right)\Rightarrow AI=AD\)

Hình thang IDMC có : AD = AI, AN//DM//CI nên MN = NC

 

25 tháng 8 2019

A B C D M E F K

a) Dễ thấy FM = AE (1) (t/c hình chữ nhật)

Lại có; Trong hình chữ vuông ABCD, hai đường chéo đồng thời là đường p/giác các góc của hình vuông nên

^ADB = 45o (Tắt tí nhé). Tam giác FDM có một góc vuông và một góc bằng 45o nên nó vuông cân.

Do đó: FM = FD (2). Từ (1) và (2) suy ra AE = FD  rồi từ đó có \(\Delta\)CDF = \(\Delta\)DAE

Suy ra DE = CF.

b) Gọi giao điểm của DE, BF là K. Ta sẽ chứng minh C, M, K thẳng hàng, từ đó suy ra đpcm.

Thật vậy:(chưa nghĩ ra... bác nào nghĩ tiếp giúp cháu-_-)

25 tháng 8 2019

Nghĩ ra rồi!!! Nhưng ko chắc đâu, chỗ vẽ đường phụ với chứng minh ý!

b) Qua B vẽ đoạn thẳng BN // KM(3) và bằng KC (4) (N thuộc nửa mặt phẳng bờ BF có chứa C)

Có ngay \(\Delta\)BCK = \(\Delta\)CBN => NC = BK(5). Từ (4) và (5) suy ra BN // KC (6)

Từ (3) và (6) suy ra K, M, C thẳng hàng (theo tiên đề Ơclit)

Bác nào check giúp với ạ!