Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEDF có
FD//AE(gt)
ED//AF(gt)
Do đó: AEDF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AEDF có AD là tia phân giác của \(\widehat{FAE}\)(gt)
nên AEDF là hình thoi(Dấu hiệu nhận biết hình thoi)
a, xét (O) có gBAD nội tiếp đường tròn
=>gBAD=90độ=> EA vuông góc FD
gBCD nội tiếp đường tròn
=>gBCD=90độ => FC vuông góc DE
xét tgDEF có EA là đường cao
FC là đương cao
EA cắt FC tại B
=> B là trực tâm của tg
=>DB là đường cao
=> DB vuông góc EF
b,xét tgABF và tgCBE có gBAF=gBCE = 90độ
gABF=gCBE (hai góc đối đỉnh)
=> tgABF ~ tgCBE (g.g)
=> BA/BC= BF/BE
=>BA.BE=BC.BF
c, bn xem lại giùm mk điểm H là điểm nào
a: Xét (O) có
ΔMDC nội tiếp
MC là đường kính
=>ΔMDC vuông tại D
góc CAB=góc CDB=90 đọ
=>ABCD nội tiếp
b: góc SCA=góc ADB
góc ADB=góc ACB
=>góc SCA=góc ACB
=>CA là phân giác của góc SCB
635afg
hừm.................................
!Á