Cho tứ giác ABCD có AB=CD( AB không song song với CD). Gọi E,F,G,H theo thứ tự là trung...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và \(GH=\dfrac{AB}{2}\)

GH//AB

FE//AB

Do đó: GH//FE

Ta có: \(GH=\dfrac{AB}{2}\)

\(FE=\dfrac{AB}{2}\)

Do đó: GH=FE

Xét tứ giác EFGH có

GH=FE

GH//FE

Do đó: EFGH là hình bình hành

2: AB=CD
mà AB=8cm

nên CD=8cm

Xét ΔADC có

G,F lần lượt là trung điểm của AD,AC

=>GF là đường trung bình của ΔADC

=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)

GF//DC

DC\(\perp\)AB

Do đó: GF\(\perp\)AB

Ta có: GF\(\perp\)AB

AB//GH

Do đó: GH\(\perp\)GF

Xét hình bình hành GHEF có GH\(\perp\)GF

nên GHEF là hình chữ nhật

=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)

5 tháng 12 2023

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và FE=AB

2

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và GH=AB

2

GH//AB

FE//AB

Do đó: GH//FE

Ta có: GH=AB2

 

F

E

=

A

B

2

 

Do đó: GH=FE

 

Xét tứ giác EFGH có

 

GH=FE

 

GH//FE

 

Do đó: EFGH là hình bình hành

 

2: AB=CD

mà AB=8cm

 

nên CD=8cm

 

Xét ΔADC có

 

G,F lần lượt là trung điểm của AD,AC

 

=>GF là đường trung bình của ΔADC

 

=>GF//DC và 

G

F

=

D

C

2

=

4

c

m

 

GF//DC

 

DC

AB

 

Do đó: GF

AB

 

Ta có: GF

AB

 

AB//GH

 

Do đó: GH

GF

 

Xét hình bình hành GHEF có GH

GF

 

nên GHEF là hình chữ nhật

 

=>

S

G

H

E

F

=

G

H

G

F

=

A

B

2

C

D

2

=

4

4

=

16

(

c

m

2

)

5 tháng 12 2023

Nó bị lỗi r

 

21 tháng 9 2023

A B C D E G F H

Xét tg ABC có

EF//AC  (gt) (1)

EA=EB (gt) 

=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC

\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)

Xét tg BCD chứng minh tương tự ta cũng có GC=GD

Xét tg ADC có

GF//AC (gt) (3)

GC=GD (cmt)

=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC

\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)

Từ (1) và (3) => EF//GH (cùng // với AC)

Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)

=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Gọi O là giao của AC và BD

Ta có

FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)

Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)

\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)

Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau

 

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0