K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Ta có: Δ BAD ∼ Δ DBC

⇒ A B D ^   =   B D C ^  nên AB//CD

⇒ ABCD là hình thang.

22 tháng 9 2019

29 tháng 3 2022

a, Xét ΔABD và ΔBDC có :

\(\widehat{A}=\widehat{DBC}\left(gt\right)\)

\(\widehat{ABD}=\widehat{BDC}\) (AB//CD, slt)

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\)

b, Ta có : \(\Delta ABD\sim\Delta BDC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AD}{DC}\)

hay \(\dfrac{6}{12}=\dfrac{8}{BC}\)

\(\Rightarrow BC=\dfrac{12.8}{6}=16\left(cm\right)\)

a: Xét ΔABD và ΔBDC có

AB/BD=BD/CD=AD/BC

=>ΔABD đồng dạng với ΔBDC

b: ΔABD đồng dạng với ΔBDC

=>góc ABD=góc BDC

=>AB//CD

a: Xét ΔABD và ΔBDC có

\(\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}\left(\dfrac{3}{6}=\dfrac{6}{12}=\dfrac{5}{10}\right)\)

Do đó: ΔABD~ΔBDC

b: Ta có: ΔABD~ΔBDC

=>\(\widehat{ABD}=\widehat{BDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC
=>ABCD là hình thang