Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90
a) Ta có: \(\widehat{B}=120^o,\widehat{A}=90^o\Rightarrow\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=150^o\)
CO, DO là hai tia phân giác góc C và góc D
=> \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)=\frac{1}{2}.150^o=75^o\)
=> \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-75^o=105^o\)
b)
Xét tam giác COD
Ta có: \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)
Vì: \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)
Mặt khác: Xét tứ giác ABCD ta có: \(\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}\)
=> \(\widehat{COD}=180^o-\frac{1}{2}\left(360^o-\widehat{A}-\widehat{B}\right)=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}\)
c) Tương tự ta cũng chứng minh dc:
\(\widehat{BIA}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}\)
=> \(\widehat{COD}+\widehat{BIA}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=\frac{1}{2}.360^o=180^o\)
=>\(\widehat{FOE}+\widehat{EIF}=180^o\)
=> \(\widehat{OEI}+\widehat{IFO}=180^o\)
Vậy tứ giác EIF có các góc đối bù nhau!
Ta có BAD + ABC + BCD + CDA = 360 độ
ADC + BCD = 360 - 120 - 90 = 150 độ
=> BCO = OCD = 1/2 BCD
=> ADO = ODC = 1/2 ADC
=> ODC + OCD = 1/2 ODC + 1/2 OCD = ODC+OCD/2
=> ODC + OCD = 150 /2 =75 độ
Mà ODC + OCD +DOC = 180 độ
=> DOC = 180 - 75 = 105 độ
B) COD = 180 - (ODC + OCD)
=> COD = 180 - 1/2ADC + 1/2 BCD
Mà ADC + BCD = 360 - ( BAD + ABC)
COD = 180 - [ 360 - 1/2(BAD + ABC )]