K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1

Trong mp (ACD) kéo dài MN và CD cắt nhau tại I

Trong mp (BCD) nối IQ cắt BD tại J

Áp dụng định lý Menelaus trong tam giác ACD:

\(\dfrac{AM}{MC}.\dfrac{CI}{ID}.\dfrac{DN}{NA}=1\Rightarrow1.\dfrac{CI}{ID}.\dfrac{1}{2}=1\Rightarrow IC=2ID\)

Do \(BC=4BQ\Rightarrow QC+QB=4QB\Rightarrow QC=3QB\)

Menelaus cho tam giác BCD:

\(\dfrac{QC}{QB}.\dfrac{BJ}{JD}.\dfrac{DI}{IC}=1\Rightarrow3.\dfrac{BJ}{JD}.\dfrac{1}{2}=1\Rightarrow\dfrac{BJ}{JD}=\dfrac{2}{3}\)

Menelaus cho tam giác CQI:

\(\dfrac{ID}{DC}.\dfrac{CB}{BQ}.\dfrac{QJ}{JI}=1\Rightarrow1.4.\dfrac{JQ}{JI}=1\Rightarrow\dfrac{JQ}{JI}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{JB}{JD}+\dfrac{JQ}{JI}=\dfrac{2}{3}+\dfrac{1}{4}=\dfrac{11}{12}\)

NV
7 tháng 1

Điểm P là điểm nào em nhỉ?

26 tháng 2 2017

11 tháng 4 2019

Giải bài 8 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.

E ∈ MP ⇒ E ∈ (PMN)

E ∈ BD ⇒ E ∈ (BCD)

⇒ E ∈ (PMN) ∩ (BCD)

Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)

⇒ EN = (PMN) ∩ (BCD)

b) Trong mp(BCD) : gọi giao điểm EN và BC là F.

F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)

 

⇒ F = (PMN) ∩ BC.

a: \(N\in NP\)

\(N\in\left(NMQ\right)\)

Do đó: \(N=NP\cap\left(MNQ\right)\)

b: Trong mp(PNQ), Gọi E là giao của NQ và HK

mà \(NQ\subset\left(MNQ\right)\)

nên \(E=HK\cap\left(MNQ\right)\)

c; \(K\in\left(MHK\right)\)

\(K\in QP\subset\left(NPQ\right)\)

Do đó: \(K\in\left(MHK\right)\cap\left(NPQ\right)\)

\(H\in NP\subset\left(NPQ\right)\)

\(H\in\left(MHK\right)\)

Do đó; \(H\in\left(MHK\right)\cap\left(NPQ\right)\)

=>\(\left(MHK\right)\cap\left(NPQ\right)=KH\)

31 tháng 3 2017

a) Ta có E, N ∈ (MNP) ⋂ (BCD)

=> (PMN) ⋂ (BCD) = EN.

b) Gọi Q là giao điểm của NE và BC thì Q là giao điểm của (PMN) và BC.

11 tháng 9 2021

undefined

a,Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (BCD)

Hiển nhiên : D ∈ (KAD) và D ∈ (BCD)

⇒ (KAD) \(\cap\) (BCD) = DK

b, Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (IBC) 

Hiển nhiên I ∈ (IBC), mà I ∈ AD nên I ∈ (KAD)

⇒ (KAD) \(\cap\) (BCI) = IK

c, Trong (ABD) gọi E là giao điểm của BI và DM

⇒ \(\left\{{}\begin{matrix}E\in\left(IBC\right)\\E\in\left(DMN\right)\end{matrix}\right.\)

Trong (ACD) gọi F là giao điểm của CI và DN

⇒ \(\left\{{}\begin{matrix}F\in\left(IBC\right)\\F\in\left(DMN\right)\end{matrix}\right.\)

Vậy (DMN) \(\cap\) (IBC) = EF 

11 tháng 9 2021

sửa điểm H trên hình thành điểm F nhá

17 tháng 12 2019

25 tháng 12 2020

Ta sẽ áp dụng Menelaus cho 2 tam giác BCD và ABC

À quên cái dạo đầu :v

Vì lười chụp hình nên đánh máy vậy

Tìm giao điểm giữa CD và (MNQ) trước

Gán CD vô (BCD) => giao tuyến giữa (BDC) và (MNQ) là QK (K là giao điểm của MN với BC)

=> QK cắt CD tại P => (MNQ) cắt CD tại P

Rồi giờ áp dụng Menelaus cho tam giác ABC trước

\(\dfrac{AM}{MB}.\dfrac{BK}{KC}.\dfrac{CN}{NA}=1\Leftrightarrow\dfrac{1}{2}.\dfrac{BK}{KC}.1=1\Rightarrow BK=2KC\)

Áp dụng Menelaus cho tam giác BCD

\(\dfrac{BK}{KC}.\dfrac{CP}{PD}.\dfrac{DQ}{QB}=1\Leftrightarrow2.\dfrac{CP}{PD}.1=1\Rightarrow CP=\dfrac{1}{2}PD\)

\(\Rightarrow\dfrac{CP}{CD}=\dfrac{1}{3}\)