K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Chọn C

Gọi M là trung điểm của CD, H là trọng tâm của tam giác BCD

1 tháng 1 2019

Đáp án C

14 tháng 1 2017

Đáp án C

8 tháng 3 2017

Chọn đáp án A

1 tháng 3 2017

4 tháng 8 2018

Chọn D

Tứ diện đều ABCD  ⇒ A G 1 ⊥ B C D

Ta có ngay 

Cạnh  C G 1 = B C 3 = 3 ⇒ G 1 A = A C 2 - G 1 C 2 = 6 ⇒ d G 1 ; G 2 G 3 G 4 = 6 3

Lại có  G 2 G 3 M N = A G 2 A M = 2 3 ⇒ G 2 G 3 = 2 3 M N = 1 3 B D = 1

Tương tự GG=1, GG=1 ⇒ ∆ G 2 G 3 G 3  là tam giác đều có cạnh bằng 1

 

16 tháng 8 2019

Đáp án B

10 tháng 9 2018

Chọn A

Coi như a = 1 . Tam giác ACD vuông tại A nên A D = C D 2 - A C 2 = 1 = A B  cân tại A và tam giác ACD vuông cân tại A. Gọi H, E lần lượt là trung điểm của BD và DC. Ta có A H ⊥ B C D  và C D ⊥ A E . Hơn nữa C D ⊥ A H ⇒ C D ⊥ A H E ⇒ C D ⊥ H E  mà HE song song với BC suy ra BC vuông góc với CD. H là tâm của đường tròn ngoại tiếp tam giác BCD, do đó AH là trục đường tròn này. Trong tam giác AHE dựng đường thẳng qua E vuông góc AE và cắt AH tại điểm I. Do mặt phẳng (AHE) vuông góc với mặt phẳng (ACD) nên d cũng vuông góc với (ACD). Hơn nửa E là tâm của đường tròn ngoại tiếp tam giác ACD suy ra I là tâm của mặt cầu ngoại tiếp tứ diện ABCD.

Ta có A I . A H = A E 2 ⇒ A I = A E 2 A H . Ta có  A E = 1 2 C D = 2 2 ,  H K = 1 2 B C = 1 2   ⇒ A H = 1 2

Vậy  A I = A E 2 A H = 1   ⇒ R = 1 ⇒ V m c = 4 3 πa 3

10 tháng 6 2018

18 tháng 2 2017

Chọn A