K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

Trong (BCD): DG \cap BC = F

Vậy DG \cap (ABC) = F.

b. Cách 1: MG \subset (BMG) \equiv (ABH)  (H = BG \cap DC)

(Do mặt phẳng (BMG) "lơ lửng" trong hình chóp nên ta kéo dài BM thành BA và BG thành BH để ta có cái nhìn dễ dàng hơn đối với mặt phẳng này).

(BMG) \cap (ACD) =AH

Trong (ABH): MG \cap AH =K

Vậy MG \cap (ACD) = K.

8 tháng 12 2021

a. Trong (BCD) có GD và BC cắt nhau tại K 

vậy K = GD và (ABC) 

b. có MG ⊂ (BMG) trùng (ABH) có H = BG và DC

(BMG) và (ACD) = AH 

Trong (ABH) có MG và AH = P 

Vậy MG và (ACD) = P

19 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi N = DK ∩ AC; M = DJ ∩ BC.

Ta có (DJK) ∩ (ABC) = MN ⇒ MN ⊂ (ABC).

Vì L = (ABC) ∩ JK nên dễ thấy L = JK ∩ MN.

b) Ta có I là một điểm chung của (ABC) và (IJK).

Mặt khác vì L = MN ∩ JK mà MN ⊂ (ABC) và JK ⊂ (IJK) nên L là điểm chung thứ hai của (ABC) và (IJK), suy ra (IJK) ∩ (ABC) = IL.

Gọi E = IL ∩ AC; F = EK ∩ CD. Lí luận tương tự ta có EF = (IJK) ∩ (ACD).

Nối FJ cắt BD tại P; P là một giao điểm (IJK) và (BCD).

Ta có PF = (IJK) ∩ (BCD) Và IP = (ABD) ∩ (IJK)

20 tháng 7 2021

25 tháng 5 2017

a) Gọi \(N=DK\cap AC;M=DJ\cap BC\).

Ta có \(\left(DJK\right)\cap\left(ABC\right)=MN\Rightarrow MN\subset\left(ABC\right)\)

\(L=\left(ABC\right)\cap JK\) nên dễ thấy \(L=JK\cap MN\)

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

23 tháng 8 2021

Úi thôi mình biết làm rồi ạ :33

 

23 tháng 8 2021

Không xóa được :((

19 tháng 10 2017

Vì G là trọng tâm tam giác BCD và F  là trung điểm của CD nên G thuộc (ABF)

Ta có E là trung điểm của AB nên E thuộc ( ABF).

Gọi M là giao điểm của EG và AF mà A F ⊂ A C D suy ra M thuộc (ACD).

Vậy giao điểm của EG và mp (ACD)  là giao điểm  M của EG và AF

Chọn B.

NV
11 tháng 9 2021

Gọi E là trung điểm AC, do G là trọng tâm tam giác ACD \(\Rightarrow G\in DE\)

Theo t/c trọng tâm: \(\dfrac{GE}{GD}=\dfrac{1}{2}\)

Do I là trung điểm AB, M là trung điểm BC \(\Rightarrow\) IM là đường trung bình tam giác ABC

\(\Rightarrow IM||AC\)

Qua G kẻ đường thẳng song song AC cắt CD tại P

\(\left\{{}\begin{matrix}G\in\left(IGM\right)\\GP||AC||IM\end{matrix}\right.\) \(\Rightarrow P\in\left(IGM\right)\)

\(\Rightarrow P=CD\cap\left(IGM\right)\)

Theo định lý Talet: \(\dfrac{PC}{PD}=\dfrac{GE}{GD}=\dfrac{1}{2}\)

NV
11 tháng 9 2021

undefined