Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Số vectơ khác vectơ 0 → mà mỗi vectơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD là số các chỉnh hợp chập 2 của phần tử => số vectơ là A 4 2 = 12
Một vectơ khác vectơ không được xác định bởi 2 điểm phân biệt.
Từ 4 điểm ban đầu ta có 4 cách chọn điểm đầu và 3 cách chọn điểm cuối.
Do đó; có tất cả 4.3= 12 vecto được tạo ra.
Chọn D
Xét tập X = {A, B, C, D, E ; F}. Với mỗi cách chọn hai phần tử của tập X và sắp xếp theo một thứ tự ta được một vectơ thỏa mãn yêu cầu
Mỗi vectơ thỏa mãn yêu cầu tương ứng cho ta một chỉnh hợp chập 2 của 6 phần tử thuộc tập X.
Vậy số các vectơ thỏa mãn yêu cầu bằng số tất cả các chỉnh hợp chập 2 của 6, bằng
Chọn C.
Khẳng định thứ (III) kia chính xác là gì nhỉ? Chắc chắn 30G là ko hợp lý rồi
vtAB*vtCD= vtAB*(AD-AC)= vtAB*vtAD - vtAB*vtAC= a^2.cos60-a^2*cos60=0
Đáp án A.
Với mỗi cách chọn ra 2 đỉnh bất kỳ của tứ diện ta được 2 vecto đối nhau.
Do đó có 2 C 4 2 = 12 vecto.