K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

Ta sẽ áp dụng Menelaus cho 2 tam giác BCD và ABC

À quên cái dạo đầu :v

Vì lười chụp hình nên đánh máy vậy

Tìm giao điểm giữa CD và (MNQ) trước

Gán CD vô (BCD) => giao tuyến giữa (BDC) và (MNQ) là QK (K là giao điểm của MN với BC)

=> QK cắt CD tại P => (MNQ) cắt CD tại P

Rồi giờ áp dụng Menelaus cho tam giác ABC trước

\(\dfrac{AM}{MB}.\dfrac{BK}{KC}.\dfrac{CN}{NA}=1\Leftrightarrow\dfrac{1}{2}.\dfrac{BK}{KC}.1=1\Rightarrow BK=2KC\)

Áp dụng Menelaus cho tam giác BCD

\(\dfrac{BK}{KC}.\dfrac{CP}{PD}.\dfrac{DQ}{QB}=1\Leftrightarrow2.\dfrac{CP}{PD}.1=1\Rightarrow CP=\dfrac{1}{2}PD\)

\(\Rightarrow\dfrac{CP}{CD}=\dfrac{1}{3}\)

 

12 tháng 11 2017

Đáp án A

Gọi  thì Q là giao điểm của (MNP) và AD.

Áp dụng định lí Menelaus trong ∆ B C D  ta có:

 Áp dụng định lí Menelaus trong ∆ ABD ta có:

NV
24 tháng 12 2020

Trong mp (ABD) nối PM kéo dài cắt BD tại I

Áp dụng định lý Menelaus cho tam giác ABD:

\(\dfrac{PA}{PD}.\dfrac{DI}{IB}.\dfrac{BM}{MA}=1\Leftrightarrow\dfrac{1}{3}.\dfrac{ID}{IB}.1=1\)

\(\Leftrightarrow\dfrac{ID}{IB}=3\)

9 tháng 11 2017

Đáp án C

Xét (MNE) và (BCD) có:

E là điểm chung

BC // MNBC // (MNE)

⇒ Giao tuyến của 2 mặt phẳng là đường thẳng d đi qua E và song song BC

d cắt BD tại H

⇒ MNEH là thiết diện cần tìm

Xét tứ giác MNEH có MN // EH ( // BC)

⇒ MNEH là hình thang

7 tháng 4 2017

4 tháng 1 2019

Đáp án A

Xét (BCD) có: RQ ∩ BD = K

K ∈ (ABD)

Xét (ABD) có: PK ∩ AD = S

Gọi E là trung điểm BR

⇒ R là trung điểm đoạn EC

Mà Q là trung điểm CD

⇒ RQ là đường trung bình tam giác DEC

RQ // DE ⇒ RK // DE

Xét tam giác BRK có: RK // DE và E là trung điểm BR

D là trung điểm BK

Xét tam giác ABK có: AD là đường trung tuyến cạnh BK

      và KP là đường trung tuyến cạnh AB

      PK ∩ AD = S

S là trọng tâm tam giác ABK

⇒ S A S D = 2

25 tháng 10 2023

A B C D M N E O K

Ta có

\(E\in MN\) mà \(MN\in\left(OMN\right)\Rightarrow E\in\left(OMN\right)\)

\(O\in\left(OMN\right)\)

\(\Rightarrow EO\in\left(OMN\right)\)

Ta có

\(E\in BD\) mà \(BD\in\left(BCD\right)\Rightarrow E\in\left(BCD\right)\)

\(O\in\left(BCD\right)\)

\(EO\in\left(BCD\right)\)

Trong (BCD) kéo dài EO cắt CD tại K

=> \(K\in\left(OMN\right);K\in CD\) => K chính là giao của CD với (OMN)

1 tháng 8 2018

Đáp án D

Ta chia khối đa diện thành các khối tứ diện

Thể tích khối tứ diện đều đã cho là  V o = 2 12

 

19 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

1 tháng 2 2019

Ta có: 

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1) 

suy ra MN // BC (1) (Định lý Ta-lét đảo).

- Lại có: MN ∩ (MNI) (2)

- Từ (1) và (2) suy ra: BC // (MNI)