K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

Chọn A

Coi như a = 1 . Tam giác ACD vuông tại A nên A D = C D 2 - A C 2 = 1 = A B  cân tại A và tam giác ACD vuông cân tại A. Gọi H, E lần lượt là trung điểm của BD và DC. Ta có A H ⊥ B C D  và C D ⊥ A E . Hơn nữa C D ⊥ A H ⇒ C D ⊥ A H E ⇒ C D ⊥ H E  mà HE song song với BC suy ra BC vuông góc với CD. H là tâm của đường tròn ngoại tiếp tam giác BCD, do đó AH là trục đường tròn này. Trong tam giác AHE dựng đường thẳng qua E vuông góc AE và cắt AH tại điểm I. Do mặt phẳng (AHE) vuông góc với mặt phẳng (ACD) nên d cũng vuông góc với (ACD). Hơn nửa E là tâm của đường tròn ngoại tiếp tam giác ACD suy ra I là tâm của mặt cầu ngoại tiếp tứ diện ABCD.

Ta có A I . A H = A E 2 ⇒ A I = A E 2 A H . Ta có  A E = 1 2 C D = 2 2 ,  H K = 1 2 B C = 1 2   ⇒ A H = 1 2

Vậy  A I = A E 2 A H = 1   ⇒ R = 1 ⇒ V m c = 4 3 πa 3

3 tháng 1 2017

27 tháng 7 2016
gọi H là trung điểm của BC vì tg BCD đều => DH _|_ BCmà BC lại là gt cua 2 tg BCD va ABC => DH _|_ mp (ABC), DH là đường cao của khối chóp
ban cm AH _|_mp (BCD) tương tự như trên ==> AH_|_DH, hai tg ABC va BCD la 2 tg đều có cạnh Bc chung nên đường cao của chúng bằng nhau=> tg HAD vuông cân tại H ma AD =a => Ah =Dh =sin45*a = a\(\frac{\sqrt{2}}{2}\)
tg đều biết độ dài đường cao => độ dài mỗi cạnh, tu do tinh duoc dt tg ABC va tinh duoc the tich khoi chop
bạn tự vẽ hình và tính nah  
27 tháng 7 2016

hihitks p nha :-)

1 tháng 9 2018

14 tháng 5 2017

23 tháng 5 2019

Đáp án A.

5 tháng 4 2016

S A B H C

Tam giác ABC vuông cân tại A nên \(BC=2AH=2a\)

Từ đó \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}a.2a=a^2\)

Vì \(SA\perp\left(ABC\right);AH\perp BC\) suy ra \(SH\perp BC\)

Do đó : \(\left(\left(SBC\right),\right)\left(ABC\right)=\widehat{SHA}=60^0\)

Suy ra \(SA=AH.\tan60^0=a\sqrt{3}\)

Vậy \(V_{SABC}=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}a\sqrt{3}a^2=\frac{a^3\sqrt{3}}{3}\)

19 tháng 1 2017