Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(CD=\sqrt{AC^2+AD^2}=a\sqrt{2}\)
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cos\widehat{BAC}}=a\sqrt{3}\)
\(\Rightarrow BD^2+CD^2=BC^2\Rightarrow CD\perp BD\)
\(cos\widehat{ADC}=\frac{AD}{CD}=\frac{1}{\sqrt{2}}\)
\(cos\left(\overrightarrow{AB};\overrightarrow{CD}\right)=\frac{\overrightarrow{AB}.\overrightarrow{CD}}{AB.CD}=\frac{\left(\overrightarrow{AD}+\overrightarrow{DB}\right).\overrightarrow{CD}}{a^2\sqrt{2}}=\frac{\overrightarrow{AD}.\overrightarrow{CD}}{a^2\sqrt{2}}=\frac{a.a\sqrt{2}.\frac{1}{\sqrt{2}}}{a^2\sqrt{2}}=\frac{1}{\sqrt{2}}\)
\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{CD}\right)=45^0\)
\(\left\{{}\begin{matrix}\widehat{BAC}=60^0\\AB=AC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) đều \(\Rightarrow AB=BC\)
Tương tự ta có \(\Delta ABD\) đều \(\Rightarrow BD=AB=BC\)
\(\Rightarrow\Delta ACD=\Delta BCD\left(c.c.c\right)\)
\(\Rightarrow AJ=BJ\) (cùng là trung tuyến của 2 tam giác bằng nhau)
\(\Rightarrow\Delta ABJ\) cân tại J
\(\Rightarrow IJ\perp AB\)
Dữ kiện \(\widehat{CAD}=90^0\) là ko cần thiết
P/s: quên vẽ hình
Thế còn đáp án?