K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>BH(BH+2)=3

=>\(BH^2+2HB-3=0\)

=>(BH+3)(BH-1)=0

=>BH=-3(loại) hoặc BH=1(nhận)

Vậy: BH=1cm

NV
30 tháng 7 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)

Hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)

\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=2^2+5^2=29\)

\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

15 tháng 7 2021

Hình tự vẽ nha

a. Độ dài cạnh BC:    \(BC=\dfrac{AB^2}{BH}\) \(=\dfrac{6^2}{3}\) \(=12\) \(\left(cm\right)\)

Ta có:    \(BH+HC=BC\)

           \(3\)    \(+\) \(HC\) \(=\) \(12\)

     ⇒                 \(HC=9\)  \(\left(cm\right)\)

Độ dài AH:   \(AH^2=BH\times HC\) 

              ⇒    \(AH^2\)\(=\)    \(3\)  \(\times\) \(9\)

              ⇒     \(AH^2\)\(=\)    \(27\)

               ⇒     \(AH\) \(=\)     \(3\sqrt{3}\)

Vậy \(AH\) \(=\)  \(3\sqrt{3}\)   \(;\)    \(HC=9\) \(cm\)    \(;\)      \(BC=12\) \(cm\)

15 tháng 7 2021

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow6^2=3.BC\Rightarrow BC=12\left(cm\right)\)

tam giác ABC vuông tại A nên áp dụng Py-ta-go 

\(\Rightarrow AC^2=BC^2-AB^2=12^2-6^2=108\Rightarrow AC=6\sqrt{3}\left(cm\right)\)

Ta có: \(CH=BC-BC=12-3=9\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.6\sqrt{3}}{12}=3\sqrt{3}\left(cm\right)\)

 

12 tháng 9 2019
AH^2= BH. HC AH^2=9.25 Suy ra AH=15(cm) Còn AB vs AC dùng Pytago
16 tháng 12 2021

\(AH=\sqrt{21}\left(cm\right)\)

30 tháng 7 2021

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=4+25=29\Rightarrow BC=\sqrt{29}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{10}{\sqrt{29}}=\frac{10\sqrt{29}}{29}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{4}{\sqrt{29}}=\frac{4\sqrt{29}}{29}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{25}{\sqrt{29}}=\frac{25\sqrt{29}}{29}\)cm