Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do: 2002 chia hết cho 2 và số tận cùng của lũy thừa có cơ số là 2002 là 2 ; 4 ; 8 ; 6 => 20022003 cũng chia hết cho 2 (1)
Do: 2003 không chia hết cho 2 và số tận cùng của lũy thừa cơ số 2003 là 3 ; 9; 7 ; 1=> 20032004 không chia hết cho 2 (2)
Từ (1) và (2) ta được: 20022003 + 20032004 không chia hết cho 2
b) 34n - 6 = (34)n - 6 = 81n - 6
Do: Lũy thừa có cơ số là 81 thì có tận cùng là 1 => 81n đồng dư với 1 (mod 5) đồng thời 6 đồng dư với 1 (mod 5)
=>81n - 6 đồng dư với 1 - 1(mod 5) <=> 81n - 6 đồng dư với 0 (mod 5)
=> 81n - 6 chia hết cho 5 => 34n - 6 chia hết cho 5
c) 20012002 có tận cùng là 1 => 20012002 đồng dư với 1 (mod 10)
=> 20012002 - 1 đồng dư với 1 - 1 (mod 10) => 20012002 - 1 đồng dư với 0 (mod 10)
=> 20012002 - 1 chia hết cho 10
1)10;8;6 là số chắn nên 10k;8k;6k đều là số chẵn =>(10k+8k+6k) là số chẵn
9;7;5 là số lẻ nên 9k;7k;5k đều là số lẻ =>(9k+7k+5k) là số lẻ ( tổng 3 số lẻ là một số lẻ)
Hiệu của một số chẵn trừ đi một số lẻ là một số lẻ => hiệu trên không chia hết cho 2
2) 2001;2003 là số lẻ nên 2001n;2003n là số lẻ nên tổng 2 số lẻ 2001n+2003n sẽ là số chẵn
Mà 2002n là số chẵn nên tổng trên là môt số chẵn => chia hết cho 2
Câu 1:
Ta có: $2002\vdots 2\Rightarrow 2002^{2003}\vdots 2$
$2003\not\vdots 2\Rightarrow 2003^{2004}\not\vdots 2$
$\Rightarrow 2002^{2003}+2003^{2004}\not\vdots 2$
Câu 2:
$3^2\equiv -1\pmod 5$
$\Rightarrow 3^{4n}=(3^2)^{2n}\equiv (-1)^{2n}\equiv 1\pmod 5$
$\Rightarrow 3^{4n}-6\equiv 1-6\equiv 0\pmod 5$
$\Rightarrow 3^{4n}-6\vdots 5$
a. 20012002 +20022003=[....1]+20024.500.20023=[..1]+[...6].[...8]=[...9].Vay 20012002+20022003 ko chia het cho2.
b. 8617+9722=[....1]+[....4]=[....5].Vay 8617+9722 chia het cho 5.