Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thu vien cua trường có khoảng trên 2000 bản sach. nếu xếp 100 bản vào một tủ thì thừa 12 bản, nếu xếp 120 bản vào tủ thì thiếu 108 bản. nếu xếp 150 bản vào một tủ thì thiếu 138 bản. hỏi thu viện có bao nhiêu bản sách? ai giải hộ với
\(3a,\frac{2n+15}{n+1}\) là số nguyên
\(\Leftrightarrow2n+15⋮n+1\)
\(\Leftrightarrow2n+2+13⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+13⋮n+1\)
\(\Leftrightarrow13⋮n+1\) ( vì \(2\left(n+1\right)⋮n+1\)và \(\left(n+1\right)\inℤ\) )
\(\Leftrightarrow n+1\inƯ\left(13\right)\left\{\pm1;\pm13\right\}\)
Đến đây bn lập bảng xét để tìm n.
\(S=5+5^1+5^2+5^3+...+5^{2024}\)
\(=5+\left(5^1+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2021}+5^{2022}+5^{2023}+5^{2024}\right)\)
\(=5+\left(5^1+5^2+5^3+5^4\right)+5^4\left(5^1+5^2+5^3+5^4\right)+...+5^{2020}\left(5^1+5^2+5^3+5^4\right)\)
\(=5+780\left(1+5^4+...+5^{2020}\right)\)
Có \(780⋮65\)nên \(780\left(1+5^4+...+5^{2020}\right)⋮65\)
suy ra \(S\)chia cho \(65\)dư \(5\).
2)\(S=5+5^2+...+5^{2012}=\left(5+5^2+5^3+5^4\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)\(S=780+5^{2008}.780\)
\(S=12.65+...+5^{2008}.12.65\) chia hết cho 65
mình mới học lớp 5