Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
Câu 1 :
Đặt A = n(n+1)(2n+1)
+ n = 2k => A chia hết cho 2
+ n =2k+1 => n+1 = 2k+1+1 =2(k+1) chia hết cho 2 => A chia hết cho 2
Vậy A luôn chia hết cho 2 (1)
+n=3k => A chia hết cho 3
+n= 3k+1 => 2n+1 = 2(3k+1)+1 = 3(2k+1) chia hết cho 3=> A chia hết cho 3
+n= 3k+2 => n+1 = 3k+2+1 =3(k+1) chia hết cho 3
Vậy A luôn chia hết cho 3 (2)
Từ (1);(2) => A chia hết cho 2.3 =6 Với mọi n thuộc N
Tổng của dãy trên là: \(\frac{\left(1+9\right)9}{2}=45\) là một số lẻ mà mỗi khi xóa 2 số a, b bất kì thì tổng giảm: a+b-(a-b)=2b là một số chẵn\(\Rightarrow\) Tổng của dãy trên luôn là một số lẻ mà 0 là số chẵn\(\Rightarrow\) vô lý.
Vậy không có cách nào làm cho kết quả cuối cùng bằng 0 được
Bài tương tự :
Người ta viết lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là hiệu của chúng . Cho đến khi trên bảng chỉ còn một số thì người ta viết thêm lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là tổng của chúng . Cho đến khi trên bảng chỉ còn một số thì người ta viết thêm lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là hiệu của chúng . . .
Người ta làm như vậy cả thảy 2015 lần . Hỏi số cuối cùng còn lại trên bảng có phải là số 0 không ? Vì sao ?
Có thể là có. Bởi vì khi bạn xóa 2 số cuối thì được hiệu là 1 (vì là 2014 và 2015), rồi 2 số 2011 và 2013, 2012 và 2009,... thì bạn sẽ ra được hiệu là 1,2,3,4,... và ra hiệu là 0 với các số 1,2,3,4,... cho sẵn.
Tổng 1 + 2 + .. + 9 = 9.(9 + 1)/2 = 45
Khi xóa hai chữ số bất kỳ (a, b) bằng hiệu của chúng (a - b hoặc b - a tùy theo a lớn hơn hay nhỏ b ) thì tổng trên sẽ giảm đi a + b và tăng thêm a -b (hoặc b - a).
=> Tổng trên sẽ giảm đi a + b - (a - b) = 2.b hoặc a + b - (b - a) = 2.a. Mà 2.a và 2.b luôn là số chẵn => Mỗi lần xóa 2 số bất kỳ và thay bằng hiệu thì Tổng ban đầu sẽ luôn giảm đi một số chẵn, mà tổng ban đầu là số lẻ (45) nên không thể trừ số 45 cho các số chẵn để được 0 được (vì 0 là số chẵn).
Vậy không có cách nào để có kết quả tổng = 0 được.
Tổng 1 + 2 + .. + 9 = 9.(9 + 1)/2 = 45
Khi xóa hai chữ số bất kỳ (a, b) bằng hiệu của chúng (a - b hoặc b - a tùy theo a lớn hơn hay nhỏ b ) thì tổng trên sẽ giảm đi a + b và tăng thêm a -b (hoặc b - a).
=> Tổng trên sẽ giảm đi a + b - (a - b) = 2.b hoặc a + b - (b - a) = 2.a. Mà 2.a và 2.b luôn là số chẵn => Mỗi lần xóa 2 số bất kỳ và thay bằng hiệu thì Tổng ban đầu sẽ luôn giảm đi một số chẵn, mà tổng ban đầu là số lẻ (45) nên không thể trừ số 45 cho các số chẵn để được 0 được (vì 0 là số chẵn).
Vậy không có cách nào để có kết quả tổng = 0 được.