Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thị Linh Chi: Em có cách khác ạ. (cách này em làm trên lớp thường ngày.Và cũng khác đơn giản ạ)
ĐK: b,d ≠ 0 ; b≠d
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\).Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=kc\\b=kd\end{cases}}\).Thay vào:
\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(kc+kd\right)^2}{k^2c^2+k^2d^2}=\frac{\left[k\left(c+d\right)\right]^2}{k^2\left(c^2+d^2\right)}=\frac{\left(c+d\right)^2}{c^2+d^2}^{\left(đpcm\right)}\)
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (1)
Lại có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\left(=\frac{a^2}{c^2}\right)\)
\(\Rightarrowđpcm\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) suy ra \(a=bk;c=dk\)
Xét \(VT=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\left[\frac{b}{d}\right]^2=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)
mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Lại có: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)
Tương tự: \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\)
=> đpcm
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\left(dpcm\right)\)
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a^2+b^2}{c^2+d^2}\)
Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a^2+b^2}{c^2+d^2}\)