Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)
\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)
\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)
\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)
\(\Leftrightarrow-zy+x^2=-x^2+yz\)
\(\Leftrightarrow-2x^2=-2zy\)
\(\Leftrightarrow x^2=yz\)(đpcm)
C. 16 cm2
Bài này ở đề thi Violympic toán 8 vòng 11 mà bn. Chị mk làm bài này rùi nên đg 100 % đó bn
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)
Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
vì a/b=c/d =>a/c=b/d
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/c=b/d=a+b/c+d=a-b/c-d
vi a+b/c+d=a-b/c-d
=>a-b/a+b=c-d/c+d(dpcm)
- vì a/b=c/d=>a/c=b/d=>7a/7c=4b/4d
vì a/c=c/d=>3a/3c=5b/5d
áp dụng tính chất của dãy tỉ số bằng nhau ta có
a/c=b/d=7a-4b/7c-4d=3a+5b/3c+5d
vì 7a-4b/7c-4d=3a+5b/3c+5d
=>7a-4b/3a+5b=7c-4d/3c+5d(dpcm)
- vì a/b=c/d=>a/c=b/d=>a2/c2=b2/d2=ab/cd(1)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
a2/c2=b2/d2=a2+b2/c2+d2 (2)
a/c=b/d=c-a/d-b=>a2/c2=b2/d2=(c-a)2/(d-b)2 (3)
từ(1),(2) và (3)=>ac/bd=a2+c2/b2+d2=(c-a)2/(d-b)2