Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)
=>a+b/a-b=c+d/c-d
b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)
c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
a) Áp dụng tính chất tỉ lệ thức ta được:
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) \(\left(đpcm\right)\).
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Tớ lỡ tay ấn nhầm, làm tiếp nhá.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a+2c}{3b+2d}\) (ĐPCM).
c) Ta có:
+) \(\dfrac{a}{c}=\dfrac{b}{d}\) mà \(\dfrac{b}{d}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{2b}{2d}\)
Áp dụng TCDTSBN, ta có:
\(\Rightarrow\dfrac{a}{c}=\dfrac{2b}{2d}=\dfrac{a-2b}{c-2d}\) (ĐPCM)
d) Ta có:
+) \(\dfrac{a}{c}=\dfrac{b}{d}\) mà \(\dfrac{a}{c}=\dfrac{5a}{5b};\dfrac{b}{d}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{2b}{2d}\)
Áp dụng TCDTSBN, ta có:
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{2b}{2d}=\dfrac{5a-2b}{5c-2d}\) (ĐPCM)
ĐPCM là điều phải chứng minh nhá bạn, còn áp dụng TCDTSBN là áp dụng tính chất dãy tỉ số bằng nhao
Chúc bạn học tốt!
a) Ta có:
+) \(\dfrac{a}{b}=\dfrac{c}{d}\) mà \(\dfrac{c}{d}=\dfrac{4c}{4d}\)
\(\Rightarrow\)\(\dfrac{a}{b}=\dfrac{4c}{4d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\)(ĐPCM)
b) Ta có:
+) \(\dfrac{a}{b}=\dfrac{c}{d}\) mà \(\dfrac{a}{b}=\dfrac{3a}{3b}\); \(\dfrac{c}{d}=\dfrac{2c}{2d}\)
\(\Rightarrow\) \(\dfrac{3a}{3b}=\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)
b;c;d tương tự hết
b: a/b=c/d
nên 3a/3b=2c/2d
=>a/b=c/d=(3a+2c)/(3b+2d)
c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)
d: a/c=b/d
nên 5a/5c=2b/2d
=>a/c=b/d=(5a-2b)/(5c-2d)
đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)
\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)
\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)
=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)
b)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)
=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)