Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\frac{a}{b}=\frac{c}{d}\)
\(=\orbr{\begin{cases}\frac{a+c}{b+d}\\\frac{a-c}{b-d}\end{cases}}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(=\orbr{\begin{cases}\frac{a}{b}\\\frac{c}{d}\end{cases}}\right)\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
search mạn bn à. Mà bài này dễ CM mà công thức trong sách giáo khoa lớp 7 hả.......
Áp dụng t.c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Đặt a/b = c/d = k =>a = bk và c = dk
Ta có: a-b/b = bk - b /b = b( k-1 ) /b = k-1 (1)
c-d/d = dk - d /d = d( k-1 ) /d = k-1 (2)
Từ (1) và (2) => a-b/b = c-d/d khi a/b = c/d.
Có a/b=c/d
<=> ad = bc
<=> ad - db = bc - db
<=> d.(a-b) = b.(c-d)
<=> a-b/b = c-d/d
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Ta có \(\dfrac{a}{b}\)= \(\dfrac{c}{d}\)=> a/c= b/d
áp dụng tính chất dãy tỉ số bằng nhau , ta có:
a/c=b/d= a+b/c+d (1)
áp dụng tính chất dãy tỉ số bằng nhau , ta có:
a/c=b/d= a-b/c-d (2)
từ (1) :(2) => a+b/c+d= a-b/c-d => a+b/a-b= c+d/c-d (đpcm)
bạn ghi ra vở là hiểu nhé