K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

Ta co : \(\frac{2a+13b}{3a-7c}=\frac{2c+13d}{3a-7d}\)

\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\)

Suy ra : \(\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Vay : \(\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)

21 tháng 7 2015

\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)=>(2a+13b)(3c-7d)=(3a-7b)(2c+13d)

=>6ac-14ad+39bc-91bd=6ac+39ad-14bc-91bd

=>-14ad+39bc=-14bc+39ad

=>-14ad+14bc=39ad-39bc

=>-14(ad-bc)=39(ad-bc)

@-@ sao lại tek này xem lại nhá

28 tháng 7 2015

Ta có thể chứng minh :  

Ta có:  

2a+13/b3a−7b=2c+13d/3c−7d

=> 2a+13b/2c+13d=3a−7b/3c−7d

 Áp dụng tính chất của dãy tỉ số bằng nhau ta có :  

2a+13b/2c+13d=3a−7b/3c−7d=2a+13b+3a−7b/2c+13d+3c−7d=5a+6b5c+6d  

Từ 5a+6b/5c+6d = > 5a/5c=6b/6d  

<=> a/c=b/d  

Hay: a/b=c/d (đpcm)

1 tháng 2 2018

hình như sai rồi

20 tháng 11 2020

hhh ngu vc thế mà k bt anh ạ

19 tháng 11 2022

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

=>6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd

=>-14ad+14bc=39ad-39bc

=>ad-bc=0

=>ad=bc

=>a/b=c/d

=>(a+b)/b=(c+d)/d

7 tháng 11 2018

Câu trả lời rõ ở link này : https://olm.vn/hoi-dap/detail/9631580415.html

29 tháng 12 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b\left(2k+13\right)}{b\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(1\right)\)

\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d\left(2k+13\right)}{d\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(2\right)\)

Từ \(\left(1\right)\) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}\)( đpcm ) 

Chúc bạn học tốt !!!

29 tháng 12 2019

Từ \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a}{2c}=\frac{13b}{13d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Ta có: \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Leftrightarrow\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)

\(\Leftrightarrow\dfrac{a}{c}+\dfrac{b}{d}=\dfrac{a}{c}-\dfrac{b}{d}\)

\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

hay \(\dfrac{a}{b}=\dfrac{c}{d}\)

13 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Suy ra : \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b.\left(2k+13\right)}{b.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)

              \(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d\left(2k+13\right)}{d\left(3k-7\right)}=\frac{2k+13}{3k-7}\)

Vậy \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) Khi : \(\frac{a}{b}=\frac{c}{d}\)

13 tháng 8 2016

ta có : \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)

<=> (2a+13b)(3c-7d)=(2c+13d)(7a-7b)

<=>6ac-14ad+39bc-91bd=6c-14bc+39ab-91bd

<=>39bc-14ab=39ab-14bc

<=> bc=ab

<=>\(\frac{a}{b}=\frac{c}{d}\)

9 tháng 11 2018

Ta có: \(\frac{2a+13b}{3a-7c}=\frac{2c+13d}{3a-7d}\)

\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\)

\(\Rightarrow\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\left(đpcm\right)\)