K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
14 tháng 4 2022
Tính chất : Ảnh thật ngược chiều cao bằng vật
Ảnh cách thấu kính một đoạn là
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{6}+\dfrac{1}{d'}\Rightarrow d'=12cm\)
Chiều cao ảnh
\(h=h'=2cm\)
LL
5 tháng 4 2021
xétΔOAB và ΔOA'B'
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\)⇒\(\dfrac{AB}{A'B'}=\dfrac{8}{OA'}\left(1\right)\)
xétΔOFI và ΔF'A'B'
\(\dfrac{OI}{A'B'}=\dfrac{12}{OF'+OA'}\)(2)
từ (1) và (2)⇒\(\dfrac{8}{OA'}=\dfrac{12}{12+OA'}\)
⇔8.(12+OA')=12.OA'
⇔96+8.OA'=12.OA'
⇔8.OA'-12.OA'=96
⇔-4.OA'=96
⇔OA'=-24 cm
thay OA'=-24 vào (1)
\(\dfrac{1}{A'B'}=\dfrac{8}{-24}\)⇒A'B'=\(-\dfrac{1}{3}\) cm
a) Tính chất:
- Ảnh thật
- Ảnh lớn hơn vật
- Ngược chiều với vật
b)
Tóm tắt:
OF = OF' = f = 16cm
AB = h = 4cm
OA = d = 24cm
A'B' = h' = ?
OA' = d' = ?
Giải:
\(\Delta ABF~\Delta OIF\)
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{AO-OF}{OF}\Leftrightarrow\dfrac{4}{A'B'}=\dfrac{24-16}{16}\)
=> A'B' = 8cm
\(\Delta OAB~\Delta OA'B'\)
\(\Rightarrow\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\Leftrightarrow\dfrac{24}{OA'}=\dfrac{4}{8}\Rightarrow OA'=48cm\)