K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Chọn C.

Ta có

   

Giả sử x0  là nghiệm của phương trình  ex - e-x = 2 cosax  (*), thì x0 ≠ 0  và 2x0 là nghiệm của (1) và -2x0  là nghiệm của (2) hoặc ngược lại

Phương trình (*) có 5 nghiệm nên hai phương trình (1), (2) có 5 nghiệm phân biệt.

Vậy phương trình ex - e-x = 2 cosax  + 4  có 10 nghiệm phân biệt.

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

NV
5 tháng 1 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\7^x\ge m\end{matrix}\right.\)

\(\left[{}\begin{matrix}4log_2^2x+log_2x-5=0\\7^x-m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=2^{-\dfrac{5}{4}}\\7^x=m\end{matrix}\right.\) 

Với \(m\le0\) thì pt đã cho luôn có đúng 2 nghiệm

Vậy không cần xét tiếp, hiển nhiên là có vô số giá trị thực của m rồi?

30 tháng 1 2017

Đáp án C

28 tháng 12 2018

Chọn C

23 tháng 11 2019

Đáp án C

Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số f(x) và trục hoành.

Từ bảng biến thiên ta suy ra: Số nghiệm của phương trình (*) bằng 2

23 tháng 8 2018

Đáp án C

Điều kiện: .

Xét hàm số ; .

Chia cho ta được: 

 

Bảng biến thiên và đồ thị:

Đặt .

Phương trình .

Với , từ đồ thị ta thấy phương trình này chỉ cho 1 nghiệm.

Với , từ đồ thị ta thấy phương trình này cho 3 nghiệm.

Với , từ đồ thị ta thấy phương trình này chỉ cho 1 nghiệm.

 

Vậy phương trình đã cho có 5 nghiệm phân biệt.