\(\dfrac{cosB}{1-sinB}\)=\(\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(cos^2B=1-sin^2B->Sin^2B+cos^2B=1\) (luôn đúng )=> đpcm.

6 tháng 7 2017

sin đi học cos không hư tang đoàn kết costang kết đoànvui

29 tháng 5 2016

Kết quả = 1

30 tháng 5 2016

cho mik hỏi cách lm là j z

AH
Akai Haruma
Giáo viên
23 tháng 6 2018

Lời giải:

Với tam giác $ABC$ vuông tại $A$ ta có:

\(\sin B=\frac{AC}{BC}; \sin C=\frac{AB}{BC}; \cos B=\frac{AB}{BC}; \cos C=\frac{AC}{BC}\)

Vì $AB$ khác $AC$ nên hiển nhiên \(\cos B\neq \cos C\) nên mẫu số luôn đảm bảo khác 0

Do đó:

\(\frac{\sin B-\sin C}{\cos B-\cos C}=\frac{\frac{AC}{BC}-\frac{AB}{BC}}{\frac{AB}{BC}-\frac{AC}{BC}}=\frac{AC-AB}{AB-AC}=-1< 0\)

Ta có đpcm

Bài 2: 

Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)

Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)

\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)

a: BC=AD=5a

\(AB=\sqrt{AC^2+CB^2}=13a\)

b: \(\dfrac{sinB+cosB}{sinB-cosB}=\left(\dfrac{AC}{AB}+\dfrac{BC}{AB}\right):\left(\dfrac{AC}{AB}-\dfrac{BC}{AB}\right)\)

\(=\dfrac{AC+BC}{AC-BC}=\dfrac{12a+5a}{12a-5a}=\dfrac{17}{7}\)

12 tháng 6 2016

Vì sinB = \(\frac{3}{5}\)   , ta có : sin2B + cos2B = 1

nên cos2B = 1 - sin2B = 1 - ( \(\frac{3}{5}\) )2  = 1 - \(\frac{9}{25}\)   = \(\frac{16}{25}\)   

Vậy cosB = \(\frac{4}{5}\)    ( vì cosB > 0 )

Suy ra : tgB = sinB : cosB = \(\frac{3}{5}\)  : \(\frac{4}{5}\)   = \(\frac{3}{4}\) 

               cotgB = cosB : sinB = \(\frac{4}{5}\)   : \(\frac{3}{5}\)   = \(\frac{4}{3}\)

26 tháng 7 2016

mơn nhoa

16 tháng 7 2017

A B C D H

a,\(\frac{sinB+cosB}{sinB-cosB}=\frac{\frac{sinB}{cosB}+\frac{cosB}{cosB}}{\frac{sinB}{cosB}-\frac{cosB}{cosB}}=\frac{tanB+1}{tanB-1}\) (1)

doABCD co AD=BC=5a 

nen trong tam giac vuong ABC co \(tanB=\frac{12a}{5a}=\frac{12}{5}\)

thay vao (1) ta co\(\frac{\sin B+\cos B}{\sin B-\cos B}=\frac{\tan B+1}{\tan B-1}=\frac{\frac{12}{5}+1}{\frac{12}{5}-1}=\frac{17}{7}\)

b, áp dụng đl pitago vào tam giác vuông ABC có \(AB^2=AC^2+CB^2\Rightarrow AB=13a\)

áp dụng hệ thức lượng vào tam giác vuông ABC \(CH\cdot AB=AC\cdot AB\Rightarrow CH=\frac{12\cdot5}{13}=\frac{60}{13}\)

24 tháng 6 2018

a) Có AD = BC = 5a, AC = 12a
Xét tam giác ABC vuông tại C ⇒ AB2 =169a2 ⇔ AB= 13a ( Định lý Pitago )
Xét tam giác ABC vuông tại C, có: \(\sin ABC\) = \(\dfrac{12a}{13a}\), \(\cos ABC\) = \(\dfrac{5a}{13a}\)
=> (\(\dfrac{\sin B+\cos B}{\sin B-\cos B}\)) = ( \(\dfrac{12a}{13a}+\dfrac{5a}{13a}\))/\(\dfrac{12a}{13a}-\dfrac{5a}{13a}\))= \(\dfrac{17}{7}\)
b) Trong tam giác ADC, Kẻ AH vuông góc DC
Trong tam giác ACB, Kẻ CK vuông góc AB
Có: AB//DC ( tính chất hình thang)
Mà: AD vuông góc DC
⇒ AD vuông góc AB (1)
Tương tự có CK vuông góc DC (2)
Từ (1) và (2) ⇒ Tứ giác ABCD là hình chữ nhật
⇒ AD = CK
Xét tam giác ABC vuông tại C có CK là đường cao AB
⇔ AB. CK = CB. CA
⇒ 13a. CK = 5a. 12a
⇔ CK= ( \(\dfrac{60}{13}\) )a = AH
Xét tam giác AHC vuông tại H có HC = ( \(\dfrac{144}{13}\) )a ( pitago)
Xét tam giác AHD vuông tại H có HD = ( \(\dfrac{25}{13}\) )a ( pitago)
Mà H nằm giữa DC => DC = HC + HD = 13a
⇒ SABCD =\(\dfrac{1}{2}\)AH ( AB + CD ) = \(\dfrac{1}{2}\). ( \(\dfrac{60}{13}\) )a. (13a +13a ) = 60a2

Vậy diện tích hình thang ABCD là 60a2.