Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D S1 S2 S3 S4 S5 S6
mik cho gợi ý thôi né :cậu c/m cho :
S2=S5 => S1=S4
Mà S tam giác ABM=S tam giác AMC=/2S tam giác ABC
C/m :S1+S2+S3 =S4+S5+S6=1/2 S tam giác ABC
=> Đpcm
Chúc bạn học tốt nha!
đề thiếu bạn nhé, làm được mỗi câu a thôi, câu b thiếu câu hỏi, câu c thì chả biết điểm E nằm ở đâu
A B C M N
vẽ hình rồi nhé bạn
a, Xét tam giác\(ABC\) có:
\(BM=CM\left(gt\right)\)
\(CN=NA\left(gt\right)\)
\(=>MN\) là đường trung bình của \(\Delta ABC\)
\(=>MN\)//\(AB\)
Xét tứ giác \(ABMNcó\):
\(MN\)//\(AB\)\(\left(cmt\right)\)
\(=>\) tứ giác \(ABMN\) là hình thang
b, Cm FNMB là hình bình hành ( sai đứng chửi)
Do FA=FB; NA=NC
=> NF // BC
Xét từ giác FNMB có: NF// BM(B,M,C thẳng hàng)
MN// BF (câu a)
=> FNMB là hình bình hành
c, :D câu này mk cx ko t đoán sao nữa :))
a) Xét tứ giác EHFA có :
BAC = 90*
HF \(\perp\)AC(gt)
HE\(\perp\)AB (gt)
=> EHFA là hình chữ nhật
=> AH = EF
b) Vì EHFA là hình chữ nhật (cmt)
=> EH//AF , EH= AF
Mà E là trung điểm PH
=> PE = EH
=> PE = AF
Xét tứ giác PEFA có :
PE = AF
PE// AF ( EH//AF , E\(\in\)PH )
=> PEFA là hình bình hành
d) Vì PEFA là hình bình hành (cmt)
=> FE//PA (1)
Ta có : HF = FQ (gt)
MÀ HF = EA
=> FQ = EA
Xét \(\Delta HAQ\)có :
AF là trung trực
=> \(\Delta HAQ\) cân tại A
=> AH = AQ
Mà AH = EF (cmt)
=> EF = AQ
Xét tứ giác EFQA ta có :
EF = AQ
EA = FQ
=> EFQA là hình bình hành
=> EF// AQ(2)
(1)(2) => P,A,Q thẳng hàng
A B C D M N E
a) Ta có : AB // CD ( do ABCD là hình bình hành )
\(\Rightarrow\)AM // NC \(\left(1\right)\)
Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)
N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)
mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)
Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)
Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành
b) Ta có : ABCD là hình bình hành (gt)
\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)
Ta có : AMCN là hình bình hành (cma)
\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường
\(\Rightarrow\)O là trụng điểm của MN (**)
Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy
c) Ta có : AM = CN (cmt)
mà \(CN=\frac{1}{2}DC\)(cmt)
\(\Rightarrow AM=\frac{1}{2}DC\)
\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\)