Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,xét tam giác AMB và tam giác DMC , có :
AMB=DMC (đối đỉnh)
DM=AM (gt)
CM=BM (gt)
=> Tam giác AMB = tam giác DMC (c.g.c)
=>BAM=CDM
vì BAM và CDM nằm ở vị trí so le trong và bằng nhau
=> AB//DC
\(\text{a, Nối BD và DC}\)
Ta co: ΔABC⊥A có M la trung diem cua cạnh huyền BC => AM là trung tuyến
=> AM = BC/2 => AM = MC = MB
mà MD = MA => MA=MD=MC=MB
=> Tứ giac BDCA có 2 đg chéo cat nhau tại trung diem cua mỗi đg
mà tứ giac BDCA có góc A = 90
=> tứ giac BDCA là HCN
=> AB= DC và AB // DC
b, xét △ABC và △CDA co
\(\text{AB = DC ; AC chung;}\widehat{BAC}=\widehat{ACD}=90^0\)
=> △ABC = △CDA (cgc)
c, Ta co: BD = AC ( BDCA là HCN)
mà AC = AE => BD = AE (1)
Ta có: BD // ÁC mà AE là tia đối của AC
=> BD // AE (2)
(1,2) => tứ giac BDAE là HBH
=> BE // AD mà M nằm tren AD => BE//AM
ế, hình bình hành BDAE có 2 đg chéo AB và DE cắt nhau tại trung điểm của mỗi đg
mà O là trug diem cua AB => O cũng là trung diem cua DE => 3 diem D,O,E thẳng hàng
Quất luôn !!
A B C D M I x
a)
Vì tam giác ABC cân tại A ( AB = AC )
Mà M là trung điểm của BC
=> AM vuông góc với BC
Xét tam giác AMB ( góc AMB = 90 độ ) và tam giác AMC ( góc AMC = 90 độ ) ta có
AB = AC
BM = MC ( GT )
=> tam giác AMB = tam giác AMC ( Cạnh huyền – cạnh góc vuông )
b) không có yêu cầu
c) Xét tam giác AMB ( góc AMB = 90o ) Và tam giác DMC ( góc DMC = 90 độ )
BM = MC
AM = MD ( GT )
=> Tam giác AMB = tam giác DMC ( 2 cạnh góc vuông )
=> Góc ABM = góc MCD ( 2 cạnh tương ứng )
MÀ 2 góc ở vị trí so le trong
=> AB // CD
d) Xét tam giác ABC và tam giác CIA có :
AC : cạnh chung
Góc ACB = góc CAI ( BC // Ax )
BC = AI
=> Tam tam giác ABC = tam giác CIA ( c - g - c )
=> Góc BAC = góc ACI ( 2 cạnh tương ứng )
MÀ 2 góc ở vị trí sole trong
=> AB // CI
MÀ CD // AB
=> 3 điểm D ; I ;C thẳng hàng
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Xét ΔAMC;ΔBMEΔAMC;ΔBME có :
BM=MC(gt)BM=MC(gt)
AMCˆ=EMBˆAMC^=EMB^ (đối đỉnh)
AM=ME(gt)AM=ME(gt)
=> ΔAMC=ΔEMB(c.g.c)ΔAMC=ΔEMB(c.g.c)
=> AC=BEAC=BE (2 cạnh tương ứng)
=> BEMˆ=AMCˆBEM^=AMC^ (2 góc tương ứng)
Mà :2 góc này ở vị trí so le trong
=> AC //BE(đpcm)AC //BE(đpcm)
b) Xét ΔAMI;ΔEMKΔAMI;ΔEMK có :
AM=ME(gt)AM=ME(gt)
MAIˆ=MEKˆ(slt)MAI^=MEK^(slt)
AI=EK(gt)AI=EK(gt)
=> ΔAMI=ΔEMK(c.g.c)ΔAMI=ΔEMK(c.g.c)
=> KM=MIKM=MI (2 cạnh tương ứng)
=> M là trung điểm của KI
Do đó : I, M, K thẳng hàng (đpcm)
XIN LỖI VÌ TRÊN ĐÂY MÌNH KHÔNG BIẾT CÁCH VẼ HÌNH
a, Xét △ABM và △ECM
Có: BM = MC (gt)
∠ABM = ∠ECM (2 góc đối đỉnh)
AM = ME (gt)
=> △ABM = △ECM (c.g.c)
b, Vì △ABM = △ECM (cmt) => ∠ABM = ∠ECM (2 góc tương ứng)
Mà ∠ABM = 90o => ∠ECM = 90o => EC ⊥ MC => EC ⊥ BC
c, Xét △ABC có: AB < AC (quan hệ giữa cạnh huyền và cạnh góc vuông)
=> EC < AC (AB = EC <= △ABM = △ECM)
c, Xét △AMC và △EMB
Có: AM = ME (gt)
∠AMC = ∠EMB (2 góc đối đỉnh)
MC = MB (gt)
=> △AMC = △EMB (c.g.c)
=> ∠MAC = ∠MEB (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AC // BE (dhnb)
a)Xét tam giác ABM và tam giác ECM có:
BM=MC(AM là đg trung tuyến)
AM = ME ( gt ) -------> tam giác ABM = tam giác ECM ( c.g.c) <dpcm>
góc AMB = góc CME (đối đỉnh)
b) Ta có : tam giác ABM = tam giác ECM (cmt)
------> góc ABM = góc MCE (hai góc tương ứng)
Mà ABM = 90* (gt)
------> MCE = 90*
hay EC vg góc vs BC <dpcm>
c) Xét tam giác ABC vuông tại B (gt)
----> AC > AB (T/c trong tam giác vg)
Mà AB =CE ( tam giác ABM = ECM )
--------> AC > CE < dpcm>
d) Nối B với E
Xét tam giác AMC và tam giác EMB có :
AM =ME ( gt )
góc BME = CAM ( đối đỉnh )
MB =MC ( gt )
--------> tam giác AMC = EMB ( c.g.c )
----> góc ACM = MBE ( hai góc tương ứng )
mà hai góc có vị trí SLT
-----> BE // AC ( dpcm)