K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Thật lòng xin lỗi vì bây giờ mới nhìn thấy bài tag của bạn.

Lời giải:

Tập hợp $A$ bao gồm $8$ số chẵn và $8$ số lẻ.

Nếu \(k\leq 8\). Ta có thể chọn một tập hợp \(S\) gồm $k$ phần tử chỉ gồm toàn số chẵn hoặc toàn số lẻ. Khi đó, mọi \(a,b\in S\) thì \(\left\{\begin{matrix} a^2+b^2\vdots 2\\ a^2+b^2> 2\end{matrix}\right.\) hay \(a^2+b^2\not\in\mathbb{P}\) (không thỏa mãn)

Do đó \(k>8\)

Nếu \(k=9\). Ta sẽ chỉ ra $k=9$ là số nhỏ nhất thỏa mãn bằng cách xét 8 nhóm sau:

\((1,16)\); \((2,15); (3,10); (4, 11); (5,6); (7,12); (8, 13); (9, 14)\)

(các cặp này được lấy ra từ 16 số nguyên dương thỏa mãn tổng các bình phương là số nguyên tố)

Khi đó trong tập $S$ gồm $9$ phần tử, theo nguyên lý Dirichlet ta luôn tồn tại ít nhất \(\left[\frac{9}{8}\right]+1=2\) phần tử thuộc cùng một nhóm, tức là trong tập S gồm $9$ phần tử luôn chọn ra được 2 phần tử \((a,b)\) thỏa mãn \(a^2+b^2\) là số nguyên tố.

Vậy \(k=9\)

17 tháng 3 2018

k nhỏ nhất = 9.

21 tháng 11 2017

B1 : 

Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a

Tương tự b^2/c+a + c+a/4 >= b

c^2/a+b + a+b/4 >= c

=> VT + a+b+c/2 >= a+b+c

=> VT >= a+b+c/2 = VP 

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

k mk nha

20 tháng 5 2017

sorry , mk ko biết câu này

20 tháng 5 2017

mình chả biết gì hết