Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=cos^2x.sin^2x\left(sin^4x+cos^4x\right)=\dfrac{1}{4}\left(2sinx.cosx\right)^2\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(=\dfrac{1}{4}sin^22x\left(1-\dfrac{1}{2}sin^22x\right)=\dfrac{1}{8}\left(1-cos4x\right)\left(1-\dfrac{1}{2}\left(1-cos4x\right)\right)\)
\(=\dfrac{1}{8}\left(1-\dfrac{2}{3}\right)\left(1-\dfrac{1}{2}\left(1-\dfrac{2}{3}\right)\right)=\dfrac{5}{144}\)
b)\(P=cos2a-cos(\dfrac{\pi}{3}-a) \\=2cos^2a-1-cos\dfrac{\pi}{3}cosa-sin\dfrac{\pi}{3}sina \\=2.(\dfrac{-2}{5})^2-1-\dfrac{1}{2}.\dfrac{-2}{5}-\dfrac{\sqrt3}{2}.\dfrac{-\sqrt{21}}{5} \\=\dfrac{-24+15\sqrt7}{50}\)
a, Vì : \(\pi< a< \dfrac{3\pi}{2}\) nên \(cos\alpha< 0\) mà \(cos^2\alpha=1-sin^2\alpha=1-\dfrac{4}{25}=\dfrac{21}{25},\)
do đó : \(cos\alpha=-\dfrac{\sqrt{21}}{5}\)
từ đó suy ra : \(tan\alpha=\dfrac{2}{\sqrt{21}},cot\alpha=\dfrac{\sqrt{21}}{2}\)
\(P=sin^22x-\left[2sin\dfrac{x}{2}cos\dfrac{x}{2}\left(cos^4\dfrac{x}{2}-sin^4\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx\left(cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\right)\left(cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx.cosx.1\right]^2\)
\(=sin^22x-\left[\dfrac{1}{2}sin2x\right]^2\)
\(=\dfrac{3}{4}sin^22x=\dfrac{3}{4}\left(1-cos^22x\right)=\dfrac{3}{4}\left(1-\dfrac{1}{4}\right)=\dfrac{9}{16}\)
\(tanx=\dfrac{sinx}{cosx}\)
\(\Rightarrow M=\dfrac{2sinx}{\dfrac{cosx}{\dfrac{4sinx}{cosx}}}-\dfrac{3cosx}{\dfrac{cosx}{\dfrac{7cosx}{cosx}}}\)
\(M=\dfrac{2tanx-3}{4tanx+7}\)
\(M=\dfrac{2.\left(-2\right)-3}{4.2+7}\)
\(M=\dfrac{1}{15}\)
a/\(sina-1=2sin\dfrac{a}{2}.cos\dfrac{a}{2}-sin^2\dfrac{a}{2}-cos^2\dfrac{a}{2}=-\left(sin\dfrac{a}{2}-cos\dfrac{a}{2}\right)^2\)
b/\(P=\dfrac{cosa+cos5a+2cos3a}{sina+sin5a+2sin3a}=\dfrac{2cos3a.cos2a+2cos3a}{2sin3a.cos2a+2sin3a}=\dfrac{2cos3a\left(cos2a+1\right)}{2sin3a\left(cos2a+1\right)}=cot3a\)
c/\(P=sin\left(30+60\right)=sin90=1\)
d/
\(A=cos\dfrac{2\pi}{7}+cos\dfrac{6\pi}{7}+cos\dfrac{4\pi}{7}\Rightarrow A.sin\dfrac{\pi}{7}=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)
\(=\dfrac{1}{2}sin\dfrac{3\pi}{7}-\dfrac{1}{2}sin\dfrac{\pi}{7}+\dfrac{1}{2}sin\dfrac{5\pi}{7}-\dfrac{1}{2}sin\dfrac{3\pi}{7}+\dfrac{1}{2}sin\dfrac{7\pi}{7}-\dfrac{1}{2}sin\dfrac{5\pi}{7}\)
\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\Rightarrow A=-\dfrac{1}{2}\)
e/
\(tan\dfrac{\pi}{24}+tan\dfrac{7\pi}{24}=\dfrac{sin\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}}+\dfrac{sin\dfrac{7\pi}{24}}{cos\dfrac{7\pi}{24}}=\dfrac{sin\dfrac{\pi}{24}cos\dfrac{7\pi}{24}+sin\dfrac{7\pi}{24}cos\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}.cos\dfrac{7\pi}{24}}\)
\(=\dfrac{sin\left(\dfrac{\pi}{24}+\dfrac{7\pi}{24}\right)}{\dfrac{1}{2}cos\dfrac{\pi}{4}+\dfrac{1}{2}cos\dfrac{\pi}{3}}=\dfrac{2sin\dfrac{\pi}{3}}{cos\dfrac{\pi}{4}+cos\dfrac{\pi}{3}}=\dfrac{\sqrt{3}}{\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}+1}\)
\(A.sin\dfrac{\pi}{7}=sin\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)\)
\(=\dfrac{1}{8}sin\left(\pi+\dfrac{\pi}{7}\right)=\dfrac{1}{8}sin\left(-\dfrac{\pi}{7}\right)\)
\(=-\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)
\(\Rightarrow A=-\dfrac{1}{8}\)
a.Ta có : \(x\in\left(\pi;\dfrac{3}{2}\pi\right)\Rightarrow cosx< 0\)
\(cosx=-\sqrt{1-sin^2x}=-\sqrt{1-0,8^2}=-0,6\)
\(tanx=\dfrac{4}{3};cotx=\dfrac{3}{4}\)
b. cos 2x = \(cos^2x-sin^2x=0,6^2-0,8^2=-0,28\)
\(P=2.cos2x=-0,56\)
\(Q=tan\left(2x+\dfrac{\pi}{3}\right)=\dfrac{tan2x+tan\dfrac{\pi}{3}}{1-tan2x.tan\dfrac{\pi}{3}}=\dfrac{tan2x+\sqrt{3}}{1-tan2x.\sqrt{3}}\)
tan 2x = \(\dfrac{2tanx}{1-tan^2x}=\dfrac{\dfrac{2.4}{3}}{1-\left(\dfrac{4}{3}\right)^2}=\dfrac{-24}{7}\)
\(Q=\dfrac{-\dfrac{24}{7}+\sqrt{3}}{1+\dfrac{24}{7}.\sqrt{3}}\) \(=\dfrac{-24+7\sqrt{3}}{7+24\sqrt{3}}\)
\(tanx=\dfrac{1}{2}\Leftrightarrow\dfrac{sinx}{cosx}=\dfrac{1}{2}\Leftrightarrow cosx=2sinx\)
\(1+tan^2x=\dfrac{1}{cos^2x}\) \(\Leftrightarrow cos^2x=\dfrac{4}{5}\)
=> \(sin2x=2sinx.cosx=cos^2x\)
\(A=\dfrac{2sin2x}{2-3cos2x}=\dfrac{2cos^2x}{2-3\left(cos^2x-1\right)}=\dfrac{8}{13}\)