K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

A B C 9 12 D E

a, mình giải tắt bạn dựa vào tỉ số đồng dạng làm ra nhaa 

Xét tam giác ABC vuông tại A, đường cao AH

Theo định lí Pytago ta có : \(AB^2+AC^2=BC^2\Rightarrow BC^2=144+81=225\Rightarrow BC=15\)cm 

* Dễ có : \(AB^2=BD.BC\Rightarrow BD=\frac{AB^2}{BC}=\frac{81}{15}=\frac{26}{5}\)cm 

* Dễ có : \(AC^2=CD.BC\Rightarrow CD=\frac{AC^2}{BC}=\frac{144}{15}=\frac{48}{5}\)cm

* Dễ có : \(AD^2=BD.CD=\frac{26}{5}.\frac{48}{5}=\frac{1248}{25}\Rightarrow AD=\frac{4\sqrt{78}}{5}\)cm 

tương tự ta có : 

\(AD^2=AE.AC\Rightarrow AE=\frac{AD^2}{AC}=\frac{\frac{1248}{25}}{12}=\frac{104}{25}\)cm 

\(DC^2=EC.AC\Rightarrow EC=\frac{DC^2}{AC}=\frac{\left(\frac{48}{5}\right)^2}{12}=\frac{192}{25}\)cm 

\(\Rightarrow DE^2=AE.EC=\frac{104}{25}.\frac{192}{25}=\frac{19968}{625}\Rightarrow DE=\frac{16\sqrt{78}}{25}\)cm 

28 tháng 5 2021

b, Ta có : \(S_{ACD}=\frac{1}{2}AD.DC=\frac{1}{2}.\frac{4\sqrt{78}}{5}.\frac{48}{5}\approx33,91\)cm2

Ta có : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.9.12=54\)cm2

\(\Rightarrow S_{ABD}=S_{ABC}-S_{ACD}=54-33,9\approx20,1\)cm2

2 tháng 3 2022

a. Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{9^2+12^2}=\sqrt{225}=15cm\)

Áp dụng t/c tia phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{9}{12}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{15}{7}\)

\(\Rightarrow CD=\dfrac{15}{7}.4=\dfrac{60}{7}cm\)

\(\Rightarrow BD=\dfrac{15}{7}.3=\dfrac{45}{7}cm\)

Xét tam giác ABD và tam giác ADE có:

\(\widehat{E}=\widehat{D}=90^0\)

AD: cạnh chung

\(\widehat{BAD}=\widehat{DAE}\) ( gt )

=> tam giác ABD = tam giác ADE ( c.g.c )

=> BD = ED = \(\dfrac{45}{7}cm\)

b. Xét tam giác ABD và tam giác ABC, có:

\(\widehat{BAC}=\widehat{BDA}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác ABD đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{AD}{AC}\)

\(\Leftrightarrow\dfrac{45}{\dfrac{7}{9}}=\dfrac{AD}{12}\)

\(\Leftrightarrow\dfrac{5}{7}=\dfrac{AD}{12}\)

\(\Leftrightarrow7AD=60\Leftrightarrow AD=\dfrac{60}{7}cm\)

\(S_{ABD}=\dfrac{1}{2}.BD.AD=\dfrac{1}{2}.\dfrac{45}{7}.\dfrac{60}{7}\simeq27,55cm^2\)

\(S_{ACD}=\dfrac{1}{2}.CD.AD=\dfrac{1}{2}.\dfrac{60}{7}.\dfrac{60}{7}\simeq36,73cm^2\)

 

 

 

 

 

 

 

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

22 tháng 6 2021

undefined

20 tháng 5 2022

loading...  nhớ đánh giá tốt giúp mk ạ

15 tháng 2 2016

mình mới học lớp 7 thôi

15 tháng 2 2016

moi hok lop 6

19 tháng 4 2018

A B C D E

a) Ra có tam giác ABC vuông tại A ( gt )

\(\Rightarrow BC^2=AB^2+AC^2=9^2+12^2=81+144=225\left(cm\right)\)

\(\Rightarrow BC=15\left(cm\right)\)

Vì AD là tia phân giác của \(\widehat{BAC}\)( gt )

\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{12}{9}=\frac{4}{3}\Rightarrow\frac{DC+DB}{DB}=\frac{4+3}{3}=\frac{7}{3}\)\(\Rightarrow\frac{BC}{DB}=\frac{7}{3}\)

\(\Rightarrow DB=\frac{3}{7}.BC=\frac{3}{7}.15=\frac{45}{7}\left(cm\right)\)

\(\Rightarrow DC=15-\frac{45}{7}=\frac{60}{7}\left(cm\right)\)

Ta có DE // AB ( Vì AB và DE vuông góc với AC )

Áp dụng hệ quả định lý Ta lét ta có:

\(\Rightarrow\frac{DE}{AB}=\frac{CD}{CB}=\frac{60}{\frac{7}{15}}=\frac{4}{7}\)\(\Rightarrow DE=\frac{4}{7}.AB=\frac{4}{7}.9=\frac{36}{7}\left(cm\right)\)

b) Ta có: \(S_{ADC}=\frac{1}{2}.DE.AC=\frac{1}{2}.\frac{36}{7}.12=\frac{216}{7}\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.9.12=54\left(cm^2\right)\)

\(\Rightarrow S_{ABD}=S_{ABC}-S_{ACD}=54-\frac{216}{7}=\frac{126}{7}\left(cm^2\right)\)