Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)
Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)
\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x0 là nghiệm chung của 2 phương trình
Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)
\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)
Mà \(a\ne b\Rightarrow x_0=c\)
Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2
Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)
Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)
Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:
x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số khẩu trang y tế làm được mỗi ngày là a(a>0) cái/ngày
Số lượng khẩu trang y tế làm được trong 20 ngày là 20a (cái).
Số lượng khẩu trang 3M làm được trong 20 ngày là 10000-20a (cái).
Số khẩu trang 3M làm được trong 1 ngày là : (10000-20a)/20 (cái/ngày).
Theo đề bài, ta có phương trình :
a- (10000-20a)/20=100
<=>20a/20-(10000-20a)/20=100
<=>(20a-10000+20a)/20=100
<=>(40a-10000)/20=100
<=>40a-10000=2000
<=>40a=12000
<=>a=300(cái/ngày).
Vậy đơn vị làm được 300 chiếc khẩu trang y tế 1 ngày và làm được 300-100=200 cái khẩu trang 3M trong 1 ngày.
![](https://rs.olm.vn/images/avt/0.png?1311)
Để 2 pt \(x^2+ax+bc=0\)(1)
và \(x^2+bc+c=0\) (2)
thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)
Gọi 2 nghiệm của pt (1) là \(x_0\), \(x_1\)và 2 nghiệm của pt (2) là \(x_0\), \(x_2\)
( Nghiệm chung là \(x_0\))
Theo Vi-et , ta có :
\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)
Suy ra :
\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)
Vì \(x_1=b\)và \(x_0.x_1=bc\)nên \(x_0=c\)
Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)
Mà \(x_1.x_2=ab\)
Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)