Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó; ΔAHB=ΔAHC
b: Xét ΔABC có
AH là đường trung tuyến
AG=2/3AH
Do đó: G là trọng tâm
=>M là trung điểm của AC
c: Vì G là trọng tâm của ΔABC
mà N là trung điểm của AB
nên C,G,Nthẳng hàng
Bài làm :
1)
Xét 2 ∆ : ∆NAE và ∆NCM có :
+ NA = NC ( Vì N là trung điểm AC )
+ Góc ANE = Góc CNM ( 2 góc đối đỉnh )
+ MN = NE ( Giả thiết )
=> ∆NAE = ∆NCM ( c.g.c)
2)
∆NAE = ∆NCM ( c.g.c) (Chứng minh trên)
=> Góc NAE = Góc NCM
Mà 2 góc này ở vị trí so le trong
=> AE // MC
=> AE // BC
Cũng từ việc chứng minh được ∆NAE = ∆NCM ( c.g.c) ; ta có :
AE = CM
Mà CM = MB = 1/2BC => AE = BM
3)
Ta có :
+ AE = BM ( Chứng minh trên )
+ AE // BM ( Chứng minh trên )
=> Tứ giác AEBM là hình bình hành vì có 2 cặp cạnh đối song song và bằng nhau
=> Các đường chéo cắt nhau tại trung điểm mối đường
Theo đề bài : K là trung điểm AM => K là trung điểm BE
=> 3 điểm B,K,E thẳng hàng
Bn Quý j đó ơi vẽ hình ra cko mik nha
Vẽ hình mk ms giải đc
Điểm D ở đâu vậy bạn?