Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IA}\)
\(=\overrightarrow{IB}+2\cdot\overrightarrow{IM}\)
\(=\overrightarrow{IM}\)
Lời giải:
$M$ là trung điểm $BC$ nên $\overrightarrow{BM}, \overrightarrow{CM}$ là 2 vector đối nhau.
$I$ là trung điểm $AM$ nên $-\overrightarrow{IA}=\overrightarrow{IM}$
Từ đây ta có:
$-2\overrightarrow{IA}=2\overrightarrow{IM}=(\overrightarrow{IB}+\overrightarrow{BM})+(\overrightarrow{IC}+\overrightarrow{CM})=\overrightarrow{IB}+\overrightarrow{IC}+(\overrightarrow{BM}+\overrightarrow{CM})$
$=\overrightarrow{IB}+\overrightarrow{IC}$
$\Rightarrow 2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}$
(đpcm)
a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)
\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:
b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:
\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)
\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)
Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).
c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)
Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định
Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).
mk bận đi ch nên chỉ tạm câu a nha
vẽ 3 đường trung tuyến AD ; BE ; CF
VT =
\(GA+GB+GC\) ( nhớ thêm dấu vec tơ nha )
\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)
\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\) ( quy tắc hình bình hành )
\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\)
\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)
\(=0=VP\)
a) Gọi E là trung điểm AB \(\Rightarrow\) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IE}\)
\(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)
\(2\overrightarrow{IE}+3\overrightarrow{IC}=\overrightarrow{0}\)
b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|\)
\(=5MI\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|min\Leftrightarrow MImin\)
\(\Leftrightarrow\) M là hình chiếu của I trên d
\(\overrightarrow{IA}=-2\overrightarrow{IB}\Rightarrow\overrightarrow{IA}=\frac{2}{3}\overrightarrow{BA}=-\frac{2}{3}\overrightarrow{AB}\)
\(\Rightarrow\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{AC}=-\frac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}\)
Gọi H là điểm nằm trên BC sao cho
\(\overrightarrow{HB}-2\overrightarrow{HC}=\overrightarrow{0}\Rightarrow B\text{ là trung điểm của HC}\)
khi đó ta có :\(\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{IH}+\overrightarrow{HB}-2\left(\overrightarrow{IH}+\overrightarrow{HC}\right)=-\overrightarrow{IH}\)
Vậy ta có : \(3\overrightarrow{IA}-\overrightarrow{IH}=\overrightarrow{0}\text{ hay }3\overrightarrow{IA}=\overrightarrow{IH}\)
Vậy I,A,H thẳng hàng, mà H thuộc BC vậy IA cắt BC tại H